
methylcheck Documentation
Release 0.8.4

FOXO Technologies, inc

Feb 08, 2022

Contents:

1 methylcheck is part of the methylsuite 3

2 Methylsuite package components 5

3 Installation 7

4 Tutorials and Guides 9
4.1 Loading processed methylation data and checking beta distributions 9

4.1.1 Loading Beta Values and Metadata . 9
4.1.2 Loading Other Types of Data . 11
4.1.3 Loading Data from .csv Files . 15
4.1.4 Checking Beta Distributions . 17

4.2 Filtering Poor Quality Probes . 18
4.2.1 Available probe exclusion lists . 19
4.2.2 Filtering poor quality probes . 19
4.2.3 Filtering sex-linked probes and control probes . 22

4.3 Quality Control . 25
4.3.1 controls_report (a color-coded spreadsheet of control probe performance per sample) 25
4.3.2 Quality Control in the IDE . 28
4.3.3 Predicting Sex . 42
4.3.4 Report PDF tool . 43

4.4 Custom QC with pOOBAH Vales . 45
4.4.1 Load the Beta Values in a dataframe . 45
4.4.2 Load p-values in a dataframe . 48
4.4.3 Mask Beta values where probe fails . 49
4.4.4 Remove Samples based on Percent or Number of Failed Probes 51
4.4.5 Drop out Probes with a Percentage of NaNs . 52

4.5 Outlier detection using Multidimensional Scaling (MDS) . 54
4.6 API Reference . 72

4.6.1 methylcheck.cli . 73
4.6.2 methylcheck.run_pipeline . 74
4.6.3 methylcheck.run_qc . 74
4.6.4 methylcheck.read_geo . 75
4.6.5 methylcheck.load . 76
4.6.6 methylcheck.load_both . 77
4.6.7 methylcheck.qc_signal_intensity . 78
4.6.8 methylcheck.plot_M_vs_U . 79

i

4.6.9 methylcheck.plot_controls . 79
4.6.10 methylcheck.plot_beta_by_type . 80
4.6.11 methylcheck.probes . 80
4.6.12 methylcheck.list_problem_probes . 80
4.6.13 methylcheck.exclude_probes . 81
4.6.14 methylcheck.exclude_sex_control_probes . 82
4.6.15 methylcheck.drop_nan_probes . 83
4.6.16 methylcheck.samples . 83
4.6.17 methylcheck.sample_plot . 83
4.6.18 methylcheck.beta_density_plot . 83
4.6.19 methylcheck.mean_beta_plot . 84
4.6.20 methylcheck.mean_beta_compare . 84
4.6.21 methylcheck.beta_mds_plot . 84
4.6.22 methylcheck.combine_mds . 85
4.6.23 methylcheck.cumulative_sum_beta_distribution . 86
4.6.24 methylcheck.predict . 86
4.6.25 methylcheck.get_sex . 86
4.6.26 methylcheck.assign . 87
4.6.27 Loading Data . 87
4.6.28 ReportPDF Report Builder class . 91
4.6.29 Run QC pipeline . 93
4.6.30 filtering probes . 94
4.6.31 plotting functions . 97
4.6.32 sex prediction . 103

4.7 Release History . 104
4.7.1 v0.8.3 . 104
4.7.2 v0.8.2 . 104
4.7.3 v0.8.1 . 104
4.7.4 v0.8.0 . 104
4.7.5 v0.7.9 . 105
4.7.6 v0.7.6 . 105
4.7.7 v0.7.5 . 105
4.7.8 v0.7.4 . 106
4.7.9 v0.7.3 . 106
4.7.10 v0.7.2 . 106
4.7.11 v0.7.1 . 106
4.7.12 v0.7.0 . 107
4.7.13 v0.6.4 . 107
4.7.14 v0.6.3 . 107
4.7.15 v0.6.2 . 107
4.7.16 v0.6.1 . 107
4.7.17 v0.6.0 . 107
4.7.18 v0.5.9 . 108
4.7.19 v0.5.7 . 108
4.7.20 v0.5.4 . 108
4.7.21 v0.5.2 . 108
4.7.22 v0.5.1 . 108
4.7.23 v0.5.0 . 108
4.7.24 v0.4.0 . 108

5 Indices and tables 111

Python Module Index 113

ii

Index 115

iii

iv

methylcheck Documentation, Release 0.8.4

methylcheck is a Python-based package for filtering and visualizing Illumina methylation array data. The focus is
on quality control. View on ReadTheDocs.

Contents: 1

https://life-epigenetics-methylcheck.readthedocs-hosted.com/en/latest/
https://github.com/FoxoTech/methylcheck/actions/workflows/ci.yml
https://life-epigenetics-methylcheck.readthedocs-hosted.com/en/latest/
https://opensource.org/licenses/MIT
https://circleci.com/gh/FoxoTech/methylcheck
https://www.codacy.com/gh/FoxoTech/methylcheck/dashboard?utm_source=github.com&utm_medium=referral&utm_content=FoxoTech/methylcheck&utm_campaign=Badge_Grade
https://coveralls.io/github/FoxoTech/methylcheck

methylcheck Documentation, Release 0.8.4

2 Contents:

https://raw.githubusercontent.com/FoxoTech/methylcheck/master/docs/methylcheck_overview.png

CHAPTER 1

methylcheck is part of the methylsuite

methylcheck is part of the methylsuite of python packages that provide functions to process and analyze DNA
methylation data from Illumina’s Infinium arrays (27k, 450k, and EPIC, as well as mouse arrays). This package is
focused on quality control for processed methylation data.

methylcheck functions are designed to work with a minimum of knowledge and specification required. But you can
always override the “smart” defaults with custom settings if the default settings don’t work for your data. The entire
methylsuite is designed in this format: to offer ease of use while still maintaining flexibility for customization as
needed.

3

https://pypi.org/project/methylsuite/

methylcheck Documentation, Release 0.8.4

4 Chapter 1. methylcheck is part of the methylsuite

CHAPTER 2

Methylsuite package components

You should install all three components, as they work together. The parts include:

• methylprep: for processing idat files or downloading GEO datasets from NIH. Processing steps include

– infer type-I channel switch

– NOOB (normal-exponential convolution on out-of-band probe data)

– poobah (p-value with out-of-band array hybridization, for filtering low signal-to-noise probes)

– qualityMask (to exclude historically less reliable probes)

– nonlinear dye bias correction (AKA signal quantile normalization between red/green channels across a
sample)

– calculate beta-value, m-value, or copy-number matrix

– large batch memory management, by splitting it up into smaller batches during processing

• methylcheck: (this package) for quality control (QC) and analysis, including

– functions for filtering out unreliable probes, based on the published literature

* Note that methylprep process will exclude a set of unreliable probes by default. You can
disable that using the –no_quality_mask option from CLI.

– sample outlier detection

– array level QC plots of staining, bisulfite conversion, hybridization, extension, negative, non-polymorphic,
target removal, and specificity

– spreadsheet summary of control probe performance

– data visualization functions based on seaborn and matplotlib graphic libraries.

– predict sex of human samples from probes

– interactive method for assigning samples to groups, based on array data, in a Jupyter notebook

• methylize provides more analysis and interpretation functions

– differentially methylated probe statistics (between treatment and control samples)

5

methylcheck Documentation, Release 0.8.4

– differentially methylated regions, with gene annotation from the UCSC Human Genome Browser

– volcano plots (to identify probes that are the most different)

– manhattan plots (to identify clusters of probes associated with genomic regions that are different)

6 Chapter 2. Methylsuite package components

CHAPTER 3

Installation

methylcheck maintains configuration files for your Python package manager of choice: pipenv or pip. Conda
install is coming soon.

>>> pip install methylcheck

or if you want to install all three packages at once (recommended):

>>> pip install methylsuite

7

https://pipenv.readthedocs.io/en/latest/
https://pip.pypa.io/en/stable/

methylcheck Documentation, Release 0.8.4

8 Chapter 3. Installation

CHAPTER 4

Tutorials and Guides

If you are new to DNA methylation analysis, we recommend reading through this introduction from the methylprep
documentation. Otherwise, you are ready to use methylcheck to:

• load processed methylation data

• filter unreliable probes from your data

• run array-level quality control reports

• detect outlier samples

• predict the sex of human samples

4.1 Loading processed methylation data and checking beta distribu-
tions

4.1.1 Loading Beta Values and Metadata

We will continue working with the dataset referenced in the methylprep general walkthrough: GSE147391. It was
processed from the command line with the following command:

>>> python -m methylprep process -d <filepath> --all

Where <filepath> is the directory where the raw IDAT files are stored. We use --all to tell methylprep to
give us all the possible output files, which include:

• beta_values.pkl

• poobah_values.pkl

• control_probes.pkl

• m_values.pkl

• noob_meth_values.pkl

9

https://life-epigenetics-methylprep.readthedocs-hosted.com/en/latest/introduction/introduction.md
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147391)

methylcheck Documentation, Release 0.8.4

• noob_unmeth_values.pkl

• meth_values.pkl

• unmeth_values.pkl

• sample_sheet_meta_data.pkl

As well as folders that contain the processed methylation data in .csv files.

[1]: import methylcheck
from pathlib import Path
filepath = Path('/Users/patriciagirardi/tutorial/GPL21145')

betas = methylcheck.load(filepath)
betas.head()

Files: 100%|| 1/1 [00:00<00:00, 5.92it/s]
INFO:methylcheck.load_processed:loaded data (865859, 16) from 1 pickled files (0.222s)

[1]: 203163220027_R01C01 203163220027_R02C01 203163220027_R03C01 \
IlmnID
cg00000029 0.852 0.749 0.739
cg00000103 NaN NaN NaN
cg00000109 0.943 0.916 0.884
cg00000155 0.960 0.962 0.958
cg00000158 0.969 0.972 0.971

203163220027_R04C01 203163220027_R05C01 203163220027_R06C01 \
IlmnID
cg00000029 NaN 0.891 0.896
cg00000103 NaN NaN NaN
cg00000109 0.951 0.936 0.774
cg00000155 0.958 0.963 0.959
cg00000158 0.968 0.968 0.964

203163220027_R07C01 203163220027_R08C01 203175700025_R01C01 \
IlmnID
cg00000029 0.757 0.734 0.806
cg00000103 NaN NaN NaN
cg00000109 0.932 0.920 0.898
cg00000155 0.965 0.969 0.959
cg00000158 0.970 0.974 0.964

203175700025_R02C01 203175700025_R03C01 203175700025_R04C01 \
IlmnID
cg00000029 0.881 0.740 0.885
cg00000103 NaN NaN NaN
cg00000109 0.938 0.931 0.953
cg00000155 0.956 0.964 0.961
cg00000158 0.969 0.960 0.968

203175700025_R05C01 203175700025_R06C01 203175700025_R07C01 \
IlmnID
cg00000029 0.693 0.779 0.617
cg00000103 NaN NaN NaN
cg00000109 0.899 0.889 0.734
cg00000155 0.959 0.967 0.961
cg00000158 0.965 0.965 0.975

(continues on next page)

10 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

203175700025_R08C01
IlmnID
cg00000029 0.891
cg00000103 NaN
cg00000109 0.892
cg00000155 0.960
cg00000158 0.966

You may also use methylcheck.load_both() to load both the beta values and metadata at the same time. Note
that methylcheck expects the formatting used by methylprep in this command.

[2]: df, meta = methylcheck.load_both(filepath)
meta.head()

INFO:methylcheck.load_processed:Found several meta_data files; attempting to match
→˓each with its respective beta_values files in same folders.
WARNING:methylcheck.load_processed:Columns in sample sheet meta data files does not
→˓match for these files and cannot be combined:['/Users/patriciagirardi/tutorial/
→˓GPL21145/GSE147391_GPL21145_meta_data.pkl', '/Users/patriciagirardi/tutorial/
→˓GPL21145/sample_sheet_meta_data.pkl']
INFO:methylcheck.load_processed:Multiple meta_data found. Only loading the first file.
INFO:methylcheck.load_processed:Loading 16 samples.
Files: 100%|| 1/1 [00:00<00:00, 5.98it/s]
INFO:methylcheck.load_processed:loaded data (865859, 16) from 1 pickled files (0.2s)
INFO:methylcheck.load_processed:meta.Sample_IDs match data.index (OK)

[2]: GSM_ID Sample_Name Sentrix_ID Sentrix_Position \
2 GSM4429898 Grade II rep3 203163220027 R01C01
3 GSM4429899 Grade III rep1 203163220027 R02C01
12 GSM4429908 Grade IV rep5 203163220027 R03C01
15 GSM4429911 Grade IV rep8 203163220027 R04C01
6 GSM4429902 Grade II rep6 203163220027 R05C01

source histological diagnosis description \
2 Resected glioma Diffuse astrocytoma (II) Glioma
3 Resected glioma Anaplastic astrocytoma (III) Glioma
12 Resected glioma Glioblastoma (IV) Glioma
15 Resected glioma Glioblastoma (IV) Glioma
6 Resected glioma Oligodendroglioma (II) Glioma

Sample_ID
2 203163220027_R01C01
3 203163220027_R02C01
12 203163220027_R03C01
15 203163220027_R04C01
6 203163220027_R05C01

4.1.2 Loading Other Types of Data

Formats supported by methylcheck.load() are:

[‘beta_value’, ‘m_value’, ‘meth’, ‘meth_df’, ‘noob_df’, ‘sesame’, ‘beta_csv’]

where ‘beta_value’ is the default.

4.1. Loading processed methylation data and checking beta distributions 11

methylcheck Documentation, Release 0.8.4

[3]: # the unnormalized probe values
(meth,unmeth) = methylcheck.load(filepath, format='meth_df')
meth.head()

100%|| 16/16 [00:00<00:00, 488.67it/s]
100%|| 16/16 [00:00<00:00, 1480.91it/s]
INFO:methylcheck.load_processed:(865859, 16) (865859, 16)

[3]: 203163220027_R01C01 203163220027_R02C01 203163220027_R03C01 \
IlmnID
cg00000029 933.0 874.0 845.0
cg00000103 NaN NaN NaN
cg00000109 2597.0 2428.0 2309.0
cg00000155 3491.0 4397.0 3956.0
cg00000158 5556.0 5534.0 5384.0

203163220027_R04C01 203163220027_R05C01 203163220027_R06C01 \
IlmnID
cg00000029 528.0 1579.0 1243.0
cg00000103 NaN NaN NaN
cg00000109 3082.0 2542.0 2382.0
cg00000155 4059.0 4314.0 4059.0
cg00000158 4833.0 5381.0 6078.0

203163220027_R07C01 203163220027_R08C01 203175700025_R01C01 \
IlmnID
cg00000029 893.0 741.0 1016.0
cg00000103 NaN NaN NaN
cg00000109 2710.0 1930.0 2029.0
cg00000155 4403.0 4302.0 3865.0
cg00000158 5678.0 4738.0 4938.0

203175700025_R02C01 203175700025_R03C01 203175700025_R04C01 \
IlmnID
cg00000029 1272.0 1035.0 1423.0
cg00000103 NaN NaN NaN
cg00000109 2551.0 2385.0 3010.0
cg00000155 3734.0 4996.0 5297.0
cg00000158 4690.0 5658.0 6767.0

203175700025_R05C01 203175700025_R06C01 203175700025_R07C01 \
IlmnID
cg00000029 917.0 904.0 743.0
cg00000103 NaN NaN NaN
cg00000109 2219.0 1716.0 2132.0
cg00000155 3787.0 5216.0 4389.0
cg00000158 6030.0 5780.0 6300.0

203175700025_R08C01
IlmnID
cg00000029 1386.0
cg00000103 NaN
cg00000109 2158.0
cg00000155 4404.0
cg00000158 5050.0

[4]: # noob-normalized probe values
(noob_meth,noob_unmeth) = methylcheck.load(filepath, format='noob_df')

(continues on next page)

12 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

noob_meth.head()

100%|| 16/16 [00:00<00:00, 550.34it/s]
100%|| 16/16 [00:00<00:00, 1499.81it/s]
INFO:methylcheck.load_processed:(865859, 16), (865859, 16)

[4]: 203163220027_R01C01 203163220027_R02C01 203163220027_R03C01 \
IlmnID
cg00000029 1174.0 1123.0 973.0
cg00000103 NaN NaN NaN
cg00000109 3372.0 3003.0 2728.0
cg00000155 4647.0 5488.0 4754.0
cg00000158 7810.0 7100.0 6721.0

203163220027_R04C01 203163220027_R05C01 203163220027_R06C01 \
IlmnID
cg00000029 NaN 1745.0 1355.0
cg00000103 NaN NaN NaN
cg00000109 3645.0 2950.0 2766.0
cg00000155 4858.0 5390.0 5019.0
cg00000158 5904.0 6912.0 7875.0

203163220027_R07C01 203163220027_R08C01 203175700025_R01C01 \
IlmnID
cg00000029 1074.0 812.0 1342.0
cg00000103 NaN NaN NaN
cg00000109 3160.0 2185.0 2684.0
cg00000155 5198.0 5042.0 5300.0
cg00000158 6893.0 5625.0 6925.0

203175700025_R02C01 203175700025_R03C01 203175700025_R04C01 \
IlmnID
cg00000029 1497.0 1286.0 1696.0
cg00000103 NaN NaN NaN
cg00000109 3191.0 2902.0 3526.0
cg00000155 4875.0 6244.0 6430.0
cg00000158 6278.0 7188.0 8478.0

203175700025_R05C01 203175700025_R06C01 203175700025_R07C01 \
IlmnID
cg00000029 1018.0 956.0 820.0
cg00000103 NaN NaN NaN
cg00000109 2488.0 1883.0 2384.0
cg00000155 4254.0 6116.0 4892.0
cg00000158 7100.0 6859.0 7247.0

203175700025_R08C01
IlmnID
cg00000029 1524.0
cg00000103 NaN
cg00000109 2368.0
cg00000155 5048.0
cg00000158 5887.0

[5]: # m_values
m_values = methylcheck.load(filepath, format='m_value')
m_values.head()

4.1. Loading processed methylation data and checking beta distributions 13

methylcheck Documentation, Release 0.8.4

Files: 100%|| 1/1 [00:00<00:00, 5.41it/s]
INFO:methylcheck.load_processed:loaded data (865859, 16) from 1 pickled files (0.22s)

[5]: 203163220027_R01C01 203163220027_R02C01 203163220027_R03C01 \
IlmnID
cg00000029 2.525 1.579 1.500
cg00000103 NaN NaN NaN
cg00000109 4.047 3.444 2.930
cg00000155 4.582 4.681 4.528
cg00000158 4.960 5.135 5.042

203163220027_R04C01 203163220027_R05C01 203163220027_R06C01 \
IlmnID
cg00000029 NaN 3.028 3.109
cg00000103 NaN NaN NaN
cg00000109 4.269 3.875 1.775
cg00000155 4.518 4.717 4.538
cg00000158 4.928 4.909 4.748

203163220027_R07C01 203163220027_R08C01 203175700025_R01C01 \
IlmnID
cg00000029 1.643 1.466 2.055
cg00000103 NaN NaN NaN
cg00000109 3.780 3.516 3.133
cg00000155 4.797 4.960 4.564
cg00000158 4.996 5.238 4.746

203175700025_R02C01 203175700025_R03C01 203175700025_R04C01 \
IlmnID
cg00000029 2.890 1.508 2.940
cg00000103 NaN NaN NaN
cg00000109 3.912 3.748 4.358
cg00000155 4.444 4.738 4.606
cg00000158 4.958 4.568 4.920

203175700025_R05C01 203175700025_R06C01 203175700025_R07C01 \
IlmnID
cg00000029 1.175 1.819 0.685
cg00000103 NaN NaN NaN
cg00000109 3.162 3.008 1.468
cg00000155 4.547 4.885 4.641
cg00000158 4.788 4.795 5.284

203175700025_R08C01
IlmnID
cg00000029 3.027
cg00000103 NaN
cg00000109 3.045
cg00000155 4.567
cg00000158 4.844

Note: If you point to a folder with multiple batches of samples, of different array types, you’ll get an error. All samples
in the path you choose need to have the same number of probes (same array type). Here is the message you’ll get in
this scenario.

ValueError: all the input array dimensions for the concatenation axis must match
→˓exactly,
but along dimension 0, the array at index 0 has size 226618 and the array at index 1
→˓has size 244827 (continues on next page)

14 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

This shouldn’t happen if you download and process data using methylprep (which will automatically detect array
types and create separate folders for each array type). If you didn’t process with methylprep, the workaround is
manually moving the files from different array-types into separate folders and loading them separately.

The meth format for methylcheck.load() returns a list of SampleDataContainer objects.

sdc[0]._SampleDataContainer__data_frame will give you a dataframe of the first
SampleDataContainer in your list called sdc.

4.1.3 Loading Data from .csv Files

methylcheck assumes you want to load data the fastest way, using a single high-performance python3 pickled
dataframe. But there are times when you want to load from CSV output files instead. One use case is where you want
to examine probes that were filtered out by poobah (p-value probe detection). The CSVs contain this information,
whereas the pickled dataframe has it removed by default.

If you wish to load the beta values from CSVs, point the function to the parent directory where your CSVs are and it
will automatically go through that directory recursively to concatinate all of the beta value columns from each CSV
present. Please note that this will take longer than reading it from the beta pickle.

This function will by default mask the beta values of failed probes with NaN (p<=0.05). If you wish to view your raw
beta values without any influence by poobah, add the argument no_poobah=True.

[6]: df = methylcheck.load(filepath, format='beta_csv')
df

Files: 0%| | 0/16 [00:00<?, ?it/s]INFO:numexpr.utils:NumExpr defaulting to
→˓8 threads.
Files: 100%|| 16/16 [00:20<00:00, 1.29s/it]
INFO:methylcheck.load_processed:merging...
100%|| 16/16 [00:00<00:00, 524.09it/s]

[6]: 203163220027_R02C01 203163220027_R06C01 203163220027_R08C01 \
IlmnID
cg00000029 0.749 0.896 0.734
cg00000103 0.922 0.950 0.654
cg00000109 0.916 0.774 0.920
cg00000155 0.962 0.959 0.969
cg00000158 0.972 0.964 0.974
...
rs9363764 0.544 0.544 0.592
rs939290 0.055 0.591 0.974
rs951295 0.557 0.032 0.566
rs966367 0.966 0.468 0.028
rs9839873 0.968 0.618 0.975

203163220027_R03C01 203163220027_R07C01 203163220027_R04C01 \
IlmnID
cg00000029 0.739 0.757 NaN
cg00000103 0.931 0.712 0.924
cg00000109 0.884 0.932 0.951
cg00000155 0.958 0.965 0.958
cg00000158 0.971 0.970 0.968
...
rs9363764 0.062 0.058 0.431

(continues on next page)

4.1. Loading processed methylation data and checking beta distributions 15

methylcheck Documentation, Release 0.8.4

(continued from previous page)

rs939290 0.051 0.965 0.809
rs951295 0.515 0.955 0.966
rs966367 0.956 0.499 0.036
rs9839873 0.642 0.671 0.962

203163220027_R01C01 203163220027_R05C01 203175700025_R02C01 \
IlmnID
cg00000029 0.852 0.891 0.881
cg00000103 0.943 0.931 0.943
cg00000109 0.943 0.936 0.938
cg00000155 0.960 0.963 0.956
cg00000158 0.969 0.968 0.969
...
rs9363764 0.962 0.036 0.046
rs939290 0.966 0.070 0.964
rs951295 0.548 0.975 0.024
rs966367 0.029 0.478 0.488
rs9839873 0.969 0.969 0.969

203175700025_R06C01 203175700025_R08C01 203175700025_R03C01 \
IlmnID
cg00000029 0.779 0.891 0.740
cg00000103 0.920 0.731 0.809
cg00000109 0.889 0.892 0.931
cg00000155 0.967 0.960 0.964
cg00000158 0.965 0.966 0.960
...
rs9363764 0.562 0.046 0.054
rs939290 0.578 0.601 0.535
rs951295 0.073 0.556 0.035
rs966367 0.483 0.526 0.034
rs9839873 0.613 0.669 0.967

203175700025_R07C01 203175700025_R04C01 203175700025_R01C01 \
IlmnID
cg00000029 0.617 0.885 0.806
cg00000103 0.611 0.365 0.946
cg00000109 0.734 0.953 0.898
cg00000155 0.961 0.961 0.959
cg00000158 0.975 0.968 0.964
...
rs9363764 0.541 0.551 0.971
rs939290 0.625 0.603 0.962
rs951295 0.974 0.523 0.029
rs966367 0.455 0.034 0.027
rs9839873 0.974 0.972 0.970

203175700025_R05C01
IlmnID
cg00000029 0.693
cg00000103 0.934
cg00000109 0.899
cg00000155 0.959
cg00000158 0.965
... ...
rs9363764 0.966
rs939290 0.965

(continues on next page)

16 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

rs951295 0.949
rs966367 0.051
rs9839873 0.050

[865918 rows x 16 columns]

4.1.4 Checking Beta Distributions

One of the first steps users should take when loading their data is examining the beta distribution and ensuring that the
expected bimodal distribution is present. Samples whose beta distributions don’t fit the bimodal distribution are more
likely to be poor quality samples that need to be filtered out (you may be expecting a different distribution based on
what kind of data you’re looking at, of course, but the standard is bimodal with peaks around 0 and 1).

methylcheck includes a beta density plot function that is similar to seaborn’s kde plot. If the sample size is small
enough (<30), sample names will be included in the legend of the plot, so you may identify outlier samples easily.

[7]: methylcheck.beta_density_plot(df)

WARNING:methylcheck.samples.postprocessQC:Your data contains 7585 missing probe
→˓values per sample, (121361 overall). For a list per sample, use verbose=True

This data looks relatively clean! Most data on GEO should be high quality, but it always pays to check.

4.1. Loading processed methylation data and checking beta distributions 17

methylcheck Documentation, Release 0.8.4

You may also want to get an idea of the mean beta distribution (useful for comparing multiple datasets, or for looking
at a dataset before/after quality control measures.) Check the filtering probes section for examples on comparing beta
distributions and what filtering can do to your data’s mean beta distribution.

[8]: methylcheck.mean_beta_plot(df)

4.2 Filtering Poor Quality Probes

Note: Separate from any filtering that methylcheck does, the qualityMask step of the methylprep process-
ing pipeline excludes a list of probes that are historically poor quality (SeSAMe masks the same list of probes,
which are from the Zhou 2016 paper [linked below]). This can be turned off in run_pipeline by specifying
quality_mask=False if desired. There are several critera for exclusion of probes that methylcheck of-
fers. These are designed to be in line with past research that has identified “sketchy” probes. Areas that have
polymorphisms, cross-hybridization, repeat sequence elements, or base color changes can affect probe quality.
methylcheck’s list_problem_probes() function returns a list of probes excluded based on literature. For
each array type, the publication list is as follows:

• 450k: ‘Chen2013,’ ‘Price2013’, ‘Zhou2016’, ‘Naeem2014’, ‘DacaRoszak2015’

• EPIC: ‘Zhou2016’, ‘McCartney2016’

The articles are linked above, for any users that would like more detail on what probes are considered problematic and
what criteria the authors have used to identify them. The lists are also formatted in the acceptable input style for the
list_problem_probes function. See below for examples of its usage.

18 Chapter 4. Tutorials and Guides

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592906/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740789/
https://academic.oup.com/nar/article/45/4/e22/2290930
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943510/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659175/
https://academic.oup.com/nar/article/45/4/e22/2290930
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909830/

methylcheck Documentation, Release 0.8.4

[1]: import methylcheck
from pathlib import Path
filepath = Path('/Users/patriciagirardi/tutorial/GPL21145')

4.2.1 Available probe exclusion lists

We’ve imported lists of methylation probes that various researchers have previously deemed to be “sketchy.” You can
use methylcheck to remove these probes – by referring to the list by the publication’s first author name, or by the
reason these probes should be excluded from analysis.

[2]: # this code will print the criteria reason (either a publication or a type of issue,
→˓like Polymorphism)
as well as the number of probes excluded for that reason

criteria = ['Chen2013', 'Price2013', 'Naeem2014', 'DacaRoszak2015','Polymorphism',
'CrossHybridization', 'BaseColorChange', 'RepeatSequenceElements']

EPIC_criteria = ['McCartney2016', 'Zhou2016', 'Polymorphism', 'CrossHybridization',
→˓'BaseColorChange', 'RepeatSequenceElements']

print('450k probe exclusion criteria and number of probes excluded:')
for crit in criteria:

print(crit, '--', len(methylcheck.list_problem_probes('450k', [crit])))

print('\nEPIC probe exclusion criteria and number of probes excluded:')
for crit in EPIC_criteria:

print(crit, '--', len(methylcheck.list_problem_probes('EPIC', [crit])))

450k probe exclusion criteria and number of probes excluded:
Chen2013 -- 265410
Price2013 -- 213246
Naeem2014 -- 128695
DacaRoszak2015 -- 89678
Polymorphism -- 289952
CrossHybridization -- 92524
BaseColorChange -- 359
RepeatSequenceElements -- 96631

EPIC probe exclusion criteria and number of probes excluded:
McCartney2016 -- 326267
Zhou2016 -- 178671
Polymorphism -- 346033
CrossHybridization -- 108172
BaseColorChange -- 406
RepeatSequenceElements -- 0

[3]: # users may also get the list of probe names that are excluded for any of the criteria
methylcheck.list_problem_probes(array='epic', criteria=['Polymorphism'])[0:5]

[3]: ['cg14670079', 'cg26778521', 'cg04785903', 'cg15989966', 'cg21932343']

4.2.2 Filtering poor quality probes

[4]: # leave criteria undefined to list all problem probes for that array type
sketchy_probes_list = methylcheck.list_problem_probes(array='epic')

4.2. Filtering Poor Quality Probes 19

methylcheck Documentation, Release 0.8.4

[5]: df = methylcheck.load(filepath)

with the sketchy_probes_list defined above, we can use methylcheck.exclude_probes()
→˓to remove all the unwanted probes
excluded_df = methylcheck.exclude_probes(df, sketchy_probes_list)
excluded_df.head()

Files: 100%|| 1/1 [00:00<00:00, 4.75it/s]
INFO:methylcheck.load_processed:loaded data (865859, 16) from 1 pickled files (0.253s)

Of {len(df.index)} probes, {post_overlap} matched, yielding {len(df.index)-post_
→˓overlap} probes after filtering.

[5]: 203163220027_R01C01 203163220027_R02C01 203163220027_R03C01 \
IlmnID
cg00000029 0.852 0.749 0.739
cg00000109 0.943 0.916 0.884
cg00000165 0.237 0.733 0.374
cg00000221 0.943 0.937 0.939
cg00000236 0.922 0.934 0.919

203163220027_R04C01 203163220027_R05C01 203163220027_R06C01 \
IlmnID
cg00000029 NaN 0.891 0.896
cg00000109 0.951 0.936 0.774
cg00000165 0.639 0.397 0.564
cg00000221 0.926 0.942 0.945
cg00000236 0.881 0.926 0.882

203163220027_R07C01 203163220027_R08C01 203175700025_R01C01 \
IlmnID
cg00000029 0.757 0.734 0.806
cg00000109 0.932 0.920 0.898
cg00000165 0.486 0.194 0.163
cg00000221 0.938 0.933 0.949
cg00000236 0.927 0.774 0.937

203175700025_R02C01 203175700025_R03C01 203175700025_R04C01 \
IlmnID
cg00000029 0.881 0.740 0.885
cg00000109 0.938 0.931 0.953
cg00000165 0.557 0.531 0.856
cg00000221 0.936 0.934 0.949
cg00000236 0.957 0.932 0.952

203175700025_R05C01 203175700025_R06C01 203175700025_R07C01 \
IlmnID
cg00000029 0.693 0.779 0.617
cg00000109 0.899 0.889 0.734
cg00000165 0.171 0.173 0.865
cg00000221 0.944 0.937 0.942
cg00000236 0.923 0.938 0.932

203175700025_R08C01
IlmnID
cg00000029 0.891
cg00000109 0.892
cg00000165 0.581
cg00000221 0.934

(continues on next page)

20 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

cg00000236 0.951

[6]: methylcheck.beta_density_plot(excluded_df)

WARNING:methylcheck.samples.postprocessQC:Your data contains 6103 missing probe
→˓values per sample, (97656 overall). For a list per sample, use verbose=True
INFO:numexpr.utils:NumExpr defaulting to 8 threads.

To get a sense for how this affects the data, users may want to compare the mean beta density distribution before and
after probe filtering.

[7]: methylcheck.mean_beta_compare(df, excluded_df)

4.2. Filtering Poor Quality Probes 21

methylcheck Documentation, Release 0.8.4

4.2.3 Filtering sex-linked probes and control probes

Other probe types that are often filtered out are sex-linked probes and quality control probes used by Illumina. Quality
control probes are automatically filtered out in methylprep processing with the default qualityMask, so there’s
no need to run exclude_sex_control_probes if you processed your data with methylprep. Otherwise, we
recommend methylcheck’s exclude_sex_control_probes to remove both sex-linked probes and quality
control probes.

[8]: filtered_df = methylcheck.exclude_sex_control_probes(excluded_df, 'epic', no_sex=True,
→˓ no_control=True, verbose=True)

epic: Removed 12360 sex-linked probes from 16 samples. 464871 probes remaining.

[9]: filtered_df.head()

[9]: 203163220027_R01C01 203163220027_R02C01 203163220027_R03C01 \
IlmnID
cg00000029 0.852 0.749 0.739
cg00000109 0.943 0.916 0.884
cg00000165 0.237 0.733 0.374
cg00000221 0.943 0.937 0.939
cg00000236 0.922 0.934 0.919

(continues on next page)

22 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

203163220027_R04C01 203163220027_R05C01 203163220027_R06C01 \
IlmnID
cg00000029 NaN 0.891 0.896
cg00000109 0.951 0.936 0.774
cg00000165 0.639 0.397 0.564
cg00000221 0.926 0.942 0.945
cg00000236 0.881 0.926 0.882

203163220027_R07C01 203163220027_R08C01 203175700025_R01C01 \
IlmnID
cg00000029 0.757 0.734 0.806
cg00000109 0.932 0.920 0.898
cg00000165 0.486 0.194 0.163
cg00000221 0.938 0.933 0.949
cg00000236 0.927 0.774 0.937

203175700025_R02C01 203175700025_R03C01 203175700025_R04C01 \
IlmnID
cg00000029 0.881 0.740 0.885
cg00000109 0.938 0.931 0.953
cg00000165 0.557 0.531 0.856
cg00000221 0.936 0.934 0.949
cg00000236 0.957 0.932 0.952

203175700025_R05C01 203175700025_R06C01 203175700025_R07C01 \
IlmnID
cg00000029 0.693 0.779 0.617
cg00000109 0.899 0.889 0.734
cg00000165 0.171 0.173 0.865
cg00000221 0.944 0.937 0.942
cg00000236 0.923 0.938 0.932

203175700025_R08C01
IlmnID
cg00000029 0.891
cg00000109 0.892
cg00000165 0.581
cg00000221 0.934
cg00000236 0.951

[10]: methylcheck.beta_density_plot(filtered_df)

WARNING:methylcheck.samples.postprocessQC:Your data contains 5626 missing probe
→˓values per sample, (90031 overall). For a list per sample, use verbose=True

4.2. Filtering Poor Quality Probes 23

methylcheck Documentation, Release 0.8.4

[11]: methylcheck.mean_beta_compare(df, filtered_df)

24 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.3 Quality Control

4.3.1 controls_report (a color-coded spreadsheet of control probe performance
per sample)

methylcheck is geared toward quality control of processed data. To this end, there is a helpful function that summa-
rizes performance of control probes (details on control probes here). To run this function, the control_probes.pkl file
output from methylprep is required. This report ensures that the chemistry (bisulfite conversion, target specificity,
hybridization, staining, etc.) and machine readings are acceptable.

There is an optional portion of this report that relies on values from the poobah file as well. If no poobah file is present,
this part is ignored.

Check the guide linked above for more information on how to read these reports. They’re intuitively color-coded
(green = passing, red = failing, yellow = somewhere in between) so they’re easy to read at a glance. There is a
colorblind-friendly option included in this function.

We’ll walk through examples of the QC pipeline using pre-processed, filtered data (see the Filtering Probes page).

4.3. Quality Control 25

https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-user-guide-1000000004009-00.pdf

methylcheck Documentation, Release 0.8.4

[1]: import methylcheck
from pathlib import Path
filepath = Path('/Users/patriciagirardi/tutorial/GPL21145')

[2]: df, metadata = methylcheck.load_both(filepath=filepath)
metadata.head()

INFO:methylcheck.load_processed:Found several meta_data files; attempting to match
→˓each with its respective beta_values files in same folders.
WARNING:methylcheck.load_processed:Columns in sample sheet meta data files does not
→˓match for these files and cannot be combined:['/Users/patriciagirardi/tutorial/
→˓GPL21145/GSE147391_GPL21145_meta_data.pkl', '/Users/patriciagirardi/tutorial/
→˓GPL21145/sample_sheet_meta_data.pkl']
INFO:methylcheck.load_processed:Multiple meta_data found. Only loading the first file.
INFO:methylcheck.load_processed:Loading 16 samples.
Files: 100%|| 1/1 [00:00<00:00, 5.07it/s]
INFO:methylcheck.load_processed:loaded data (865859, 16) from 1 pickled files (0.223s)
INFO:methylcheck.load_processed:meta.Sample_IDs match data.index (OK)

[2]: GSM_ID Sample_Name Sentrix_ID Sentrix_Position \
2 GSM4429898 Grade II rep3 203163220027 R01C01
3 GSM4429899 Grade III rep1 203163220027 R02C01
12 GSM4429908 Grade IV rep5 203163220027 R03C01
15 GSM4429911 Grade IV rep8 203163220027 R04C01
6 GSM4429902 Grade II rep6 203163220027 R05C01

source histological diagnosis description \
2 Resected glioma Diffuse astrocytoma (II) Glioma
3 Resected glioma Anaplastic astrocytoma (III) Glioma
12 Resected glioma Glioblastoma (IV) Glioma
15 Resected glioma Glioblastoma (IV) Glioma
6 Resected glioma Oligodendroglioma (II) Glioma

Sample_ID
2 203163220027_R01C01
3 203163220027_R02C01
12 203163220027_R03C01
15 203163220027_R04C01
6 203163220027_R05C01

[3]: methylcheck.controls_report(filepath=filepath)

INFO:methylprep.files.manifests:Reading manifest file: MethylationEPIC_v-1-0_B4.
→˓CoreColumns.csv

203175700025_R01C01 GA r=0.81 ±0.23 p<0.0 |CT r=0.82 ±0.15 p<0.0
203175700025_R02C01 GA r=0.9 ±0.16 p<0.0 |CT r=0.87 ±0.13 p<0.0
203163220027_R01C01 GA r=0.86 ±0.19 p<0.0 |CT r=0.83 ±0.14 p<0.0
203163220027_R02C01 GA r=0.88 ±0.16 p<0.0 |CT r=0.85 ±0.13 p<0.0
203175700025_R05C01 GA r=0.87 ±0.14 p<0.0 |CT r=0.84 ±0.11 p<0.0
203175700025_R06C01 GA r=0.91 ±0.12 p<0.0 |CT r=0.87 ±0.1 p<0.0
203163220027_R05C01 GA r=0.87 ±0.16 p<0.0 |CT r=0.85 ±0.12 p<0.0
203163220027_R06C01 GA r=0.9 ±0.14 p<0.0 |CT r=0.85 ±0.12 p<0.0
203175700025_R03C01 GA r=0.85 ±0.17 p<0.0 |CT r=0.85 ±0.13 p<0.0
203175700025_R04C01 GA r=0.87 ±0.15 p<0.0 |CT r=0.87 ±0.11 p<0.0
203175700025_R07C01 GA r=0.88 ±0.13 p<0.0 |CT r=0.85 ±0.11 p<0.0
203175700025_R08C01 GA r=0.9 ±0.13 p<0.0 |CT r=0.87 ±0.1 p<0.0
203163220027_R03C01 GA r=0.84 ±0.17 p<0.0 |CT r=0.83 ±0.13 p<0.0

(continues on next page)

26 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

203163220027_R07C01 GA r=0.85 ±0.16 p<0.0 |CT r=0.86 ±0.11 p<0.0
203163220027_R08C01 GA r=0.87 ±0.15 p<0.0 |CT r=0.85 ±0.12 p<0.0

INFO:methylcheck.reports.controls_report:Predicting Sex...
INFO:methylprep.files.manifests:Reading manifest file: MethylationEPIC_v-1-0_B4.
→˓CoreColumns.csv

203163220027_R04C01 GA r=0.87 ±0.16 p<0.0 |CT r=0.87 ±0.12 p<0.0
(865859, 16) (865859, 16)

The color-coded results are contained in an excel file that will be saved in the
same directory that was specified as an input. It will look similar to this:

The “Passing Probes” column is the column that relies on values from the poobah file. This is a measure of how
many probes failed in each sample (detection p-value > 0.05). The p-value cut off is adjustable with the pval_sig
argument, which is set to 0.05 by default.

Notice the final column (“Result”) where most samples are passing. This column is calculated by checking that all of
the QC columns are above a minimum threshold. This threshold is adjustable with the passing argument (set to 0.7
by default). - If the poobah file is included and 20% or more of probes fail, the Result is automatically FAIL. - If 70%
of the columns are passing, the result is “OK” or passing. - If more than 70% are passing, but less than 100%, the
“OK” will have a number next to it to specify what percentage of columns passed. - If less than 70% of the columns
passed, the result is either FAIL or MARGINAL (based on how close to the 70% threshold it got).

The predicted sex column is based on the median values of methylation measurements on the X and Y chromosomes.
If yMed - xMed is less than whatever the specified cutoff value is, it is predicted female. Otherwise, the predicted
sex is male. Also, for samples from female subjects, at least 90% of the Y chromosome probes should fail. If there is
a sample sheet that includes “sex” or “gender”, the reporter will also flag any mismatches between the predicted sex
and the specified sex (this does not affect the Result column).

4.3. Quality Control 27

methylcheck Documentation, Release 0.8.4

4.3.2 Quality Control in the IDE

If you want to run a quick quality control check within your CLI or IDE (with no output files saved), use the run_qc
function. This is a simplified version of the full controls_report function.

The first and second plots shown below are based on the qc_signal_intensity function, which suggests sample
outliers based on methylated and unmethylated signal intensity. The cutoff value is based on minfi’s chosen cutoff
value. If a sample falls below the dotted line in the second chart, it is potentially poor quality (due to low fluorescence).
This is a very specific way of identifying poor quality samples and we recommend taking a more holistic approach
(using controls_report()). However, this can still be useful information in some circumstances, which is why
we’ve included it in the original qc pipeline.

The next set of plots cover hybridization, staining, bisulfite conversion, specificity, target removal, extension, negative
controls, and non-polymorphic binding, but can be more difficult to interpret in this graph format. For more, consult
Illumina’s technical document on what the expected values for these graphs should be.

The final set of plots is beta distributions by probe type (Type I and Type II); the distributions of Type I probes are
split by color channel as well.

This function is to be used before any removal of probes or samples. If you remove probes or samples from your beta
value dataframe, this function will no longer run due to inconsitant rows and/or columns in other dataframes (such as
m-value).

[4]: methylcheck.run_qc(filepath)

28 Chapter 4. Tutorials and Guides

https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-user-guide-1000000004009-00.pdf

methylcheck Documentation, Release 0.8.4

4.3. Quality Control 29

methylcheck Documentation, Release 0.8.4

List of Bad Samples
['203163220027_R01C01', '203163220027_R03C01', '203163220027_R04C01', '203163220027_
→˓R05C01', '203163220027_R06C01', '203163220027_R08C01', '203175700025_R01C01',
→˓'203175700025_R02C01', '203175700025_R05C01', '203175700025_R06C01']

30 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.3. Quality Control 31

methylcheck Documentation, Release 0.8.4

32 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.3. Quality Control 33

methylcheck Documentation, Release 0.8.4

34 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.3. Quality Control 35

methylcheck Documentation, Release 0.8.4

36 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.3. Quality Control 37

methylcheck Documentation, Release 0.8.4

INFO:methylprep.files.manifests:Reading manifest file: MethylationEPIC_v-1-0_B4.
→˓CoreColumns.csv
WARNING:methylcheck.samples.postprocessQC:Your data contains 21853 missing probe
→˓values per sample, (349658 overall). For a list per sample, use verbose=True

Found 142137 type I probes.

38 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

WARNING:methylcheck.samples.postprocessQC:Your data contains 89427 missing probe
→˓values per sample, (1430832 overall). For a list per sample, use verbose=True

Found 723722 type II probes.

4.3. Quality Control 39

methylcheck Documentation, Release 0.8.4

WARNING:methylcheck.samples.postprocessQC:Your data contains 15076 missing probe
→˓values per sample, (241225 overall). For a list per sample, use verbose=True

Found 92198 type I Red (IR) probes.

40 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

WARNING:methylcheck.samples.postprocessQC:Your data contains 6777 missing probe
→˓values per sample, (108433 overall). For a list per sample, use verbose=True

Found 49939 type I Green (IG) probes.

4.3. Quality Control 41

methylcheck Documentation, Release 0.8.4

4.3.3 Predicting Sex

If you want to predict the sex of your samples without generating the entire QC report, you need the methylated and
unmethylated .pkl files generated by methylprep and the get_sex function. See below for an example of its
usage.

[5]: import methylcheck
from pathlib import Path
filepath = Path('/Users/patriciagirardi/tutorial/GPL21145')
(meth,unmeth) = methylcheck.load(filepath, format='meth_df')

methylcheck.get_sex((meth, unmeth), plot=True)

100%|| 16/16 [00:00<00:00, 491.79it/s]
100%|| 16/16 [00:00<00:00, 1415.80it/s]
INFO:methylcheck.load_processed:(865859, 16) (865859, 16)
INFO:methylprep.files.manifests:Reading manifest file: MethylationEPIC_v-1-0_B4.
→˓CoreColumns.csv
WARNING:methylcheck.predict.sex:sample_failure_percent index did not align with
→˓output data index

42 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

[5]: x_median y_median predicted_sex
203163220027_R01C01 12.7 8.0 F
203163220027_R02C01 12.3 12.2 M
203163220027_R03C01 12.8 9.3 F
203163220027_R04C01 12.8 8.1 F
203163220027_R05C01 12.2 12.0 M
203163220027_R06C01 12.2 12.1 M
203163220027_R07C01 12.9 8.5 F
203163220027_R08C01 12.7 8.2 F
203175700025_R01C01 12.5 8.0 F
203175700025_R02C01 12.2 12.1 M
203175700025_R03C01 12.9 8.0 F
203175700025_R04C01 12.9 7.8 F
203175700025_R05C01 12.8 8.1 F
203175700025_R06C01 12.2 11.9 M
203175700025_R07C01 12.4 12.4 M
203175700025_R08C01 12.2 12.1 M

Darker, smaller markers indicate less variability and a higher confidence in the predicted sex. Our data is pretty clean
and has a good separation between the two sexes. It is occasionally the case that some samples will be misclassified.
Those warrant further investigation as they are often poor quality samples that should be excluded.

4.3.4 Report PDF tool

This is a fully customizable class template for making more advanced quality control reports. It will call a batch of
plotting functions and compile a PDF with annotation and save file to disk.

4.3. Quality Control 43

methylcheck Documentation, Release 0.8.4

• kwargs: filename, poobah_max_percent, pval_cutoff, title, author, subject,
keywords, outpath, path

If you want a quick one-line version with no further report editing, try methylcheck.
ReportPDF(runme=True). Otherwise, these are the 3 steps for using the ReportPDF class:

[8]: my_report = methylcheck.ReportPDF(filename='methylcheck_report.pdf',
title="Example Report",
path=filepath)

[9]: my_report.run_qc()

INFO:methylcheck.reports.qc_report:Data loaded
INFO:methylcheck.reports.qc_report:Beta Density Plot

['203163220027_R01C01', '203163220027_R02C01', '203163220027_R03C01', '203163220027_
→˓R05C01', '203163220027_R07C01', '203163220027_R08C01', '203175700025_R01C01',
→˓'203175700025_R03C01', '203175700025_R04C01', '203175700025_R05C01', '203175700025_
→˓R06C01']

INFO:methylprep.files.manifests:Reading manifest file: MethylationEPIC_v-1-0_B4.
→˓CoreColumns.csv
INFO:methylcheck.reports.qc_report:Beta MDS Plot
INFO:methylcheck.reports.qc_report:QC signal intensity plot
WARNING:methylcheck.qc_plot:Your poobah_values.pkl file contains missing values;
→˓color coding will be inaccurate.
INFO:methylcheck.reports.qc_report:Control probes
INFO:methylcheck.reports.qc_report:Betas by probe type
INFO:methylprep.files.manifests:Reading manifest file: MethylationEPIC_v-1-0_B4.
→˓CoreColumns.csv

[]: # Once everything has been added, you need to close the PDF before you can read it on
→˓disk.
my_report.pdf.close()
look in the path folder for a PDF file called "some_file_name.pdf" -- it will be
→˓similar to the charts
returned by methylprep.run_qc()

You can customize your ReportPDF and even pass in customized tables like this:

generate report
report = methylcheck.qc_report.ReportPDF(

path=working.name,
poobah_max_percent=10,
pval_cutoff=0.01,
title='QC Report',
author='FOXO Biosciences',
subject="QC Report",
keywords="methylation array",
outpath=working.name,
filename=report_filename,
poobah=True,
on_lambda=True,
custom_tables=custom_tables,
debug=True,
order=['beta_density_plot', 'mds', 'auto_qc',

'M_vs_U', 'qc_signal_intensity', 'controls',
'probe_types'],

)

(continues on next page)

44 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

report.run_qc()
report.pdf.close()

Notes:

• ‘on_lambda’: if you are running this within an AWS lambda function in the cloud, the default paths of your
manifest and other files will change. When True, on_lambda will allow you to specify and override paths to
your input, output, and manifest files.

• ‘path’: where to read files from.

• ‘outpath’: in this example, working.name is a python tempdir folder in a lambda virtual environment.
Everything is processed there but saved by moving to an S3 bucket.

• ‘poobah’: whether the QC should run on samples that have failed probes removed (recommended)

• custom_tables: passing in additional tables to the report. See the function’s help for more details (e.g.
help(methylcheck.qc_report.ReportPDF)).

• ‘order’: Option to specify the order of charts in the REPORT.

4.4 Custom QC with pOOBAH Vales

This tutorial is meant for those who want to have more customization to their quality control of beta values. Methylprep
provides some automatic QC by default, but in this tutorial, we will go over how to do this manually, and with
customizable parameters.

[1]: import methylcheck
import pandas as pd
import numpy as np

Filepath of the processed files (Download and processing performed with Methylprep package)

[2]: fpath = 'data/GPL13534/'

4.4.1 Load the Beta Values in a dataframe

The columns are each probe in the methylation array and the rows are each sample in the dataset. Note that if you
want the dataframe in this orientation, you will need to transpose it.

The reason behind why we are using the format='beta_csv' in methylcheck.load is because this loads the
raw beta values without any processing. By default, methylprep does some QC on the beta values automatically and
saves those new beta values in beta_values.pkl. Specifically, it removes failed probes using Sesame pOOBAH
method where a specific probe is classified as failed when the p-value >= 0.05.

If you want to use the pOOBAH to mask beta values yourself, you must specify no_poobah=True. Otherwise, it
will mask them automatically when the CSV is loaded into a dataframe.

[22]: betas = methylcheck.load('data/GPL13534', format='beta_csv', no_poobah=True).T
#betas.index.name = 'Samples'
print(betas.shape)
betas.head()

4.4. Custom QC with pOOBAH Vales 45

methylcheck Documentation, Release 0.8.4

Files: 100%|| 121/121 [00:52<00:00, 2.30it/s]
INFO:methylcheck.load_processed:merging...
100%|| 121/121 [00:00<00:00, 692.51it/s]

(121, 485577)

[22]: IlmnID cg00000029 cg00000108 cg00000109 cg00000165 cg00000236 \
9996247040_R03C02 0.796 0.961 0.853 0.246 0.902
9996247040_R03C01 0.887 0.960 0.801 0.271 0.902
3998909005_R06C01 0.847 0.972 0.914 0.187 0.950
3998909005_R06C02 0.900 0.966 0.909 0.232 0.922
3998909206_R01C02 0.885 0.957 0.911 0.152 0.922

IlmnID cg00000289 cg00000292 cg00000321 cg00000363 cg00000622 \
9996247040_R03C02 0.583 0.930 0.465 0.398 0.008
9996247040_R03C01 0.672 0.953 0.341 0.552 0.015
3998909005_R06C01 0.820 0.900 0.345 0.375 0.014
3998909005_R06C02 0.749 0.943 0.326 0.397 0.014
3998909206_R01C02 0.797 0.926 0.391 0.404 0.016

IlmnID ... rs7746156 rs798149 rs845016 rs877309 rs9292570 \
9996247040_R03C02 ... 0.468 0.374 0.079 0.016 0.978
9996247040_R03C01 ... 0.971 0.396 0.059 0.444 0.967
3998909005_R06C01 ... 0.512 0.018 0.469 0.539 0.019
3998909005_R06C02 ... 0.508 0.984 0.922 0.024 0.019
3998909206_R01C02 ... 0.045 0.977 0.491 0.531 0.480

IlmnID rs9363764 rs939290 rs951295 rs966367 rs9839873
9996247040_R03C02 0.544 0.961 0.981 0.883 0.614
9996247040_R03C01 0.042 0.537 0.967 0.582 0.333
3998909005_R06C01 0.951 0.551 0.969 0.959 0.950
3998909005_R06C02 0.962 0.582 0.536 0.945 0.944
3998909206_R01C02 0.075 0.969 0.535 0.946 0.162

[5 rows x 485577 columns]

When loading the betas from the CSV, there are still control probes in your resulting dataframe. The cell below shows
how to remove all of the control probes from you betas dataframe.

[23]: rs_probes = betas.columns[betas.columns.str.startswith('rs')]
betas_nocontrol = betas.drop(rs_probes, axis=1)
print(betas_nocontrol.shape)
betas_nocontrol = betas_nocontrol.T[betas_nocontrol.index.sort_values()].T
betas_nocontrol

(121, 485512)

[23]: IlmnID cg00000029 cg00000108 cg00000109 cg00000165 \
100946230055_R04C01 0.864 0.971 0.925 0.288
100946230056_R04C01 0.854 0.978 0.930 0.215
100946230056_R04C02 0.879 0.958 0.866 0.257
101032570143_R04C02 0.837 0.968 0.911 0.334
101032570152_R04C01 0.813 0.971 0.928 0.164
...
9996247054_R03C01 0.840 0.957 0.871 0.253
9996247054_R03C02 0.864 0.963 0.864 0.194
9996247055_R03C01 0.817 0.956 0.842 0.292
9996247055_R03C02 0.801 0.965 0.869 0.357
9996247056_R05C02 0.837 0.976 0.945 0.244

(continues on next page)

46 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

IlmnID cg00000236 cg00000289 cg00000292 cg00000321 \
100946230055_R04C01 0.935 0.654 0.945 0.378
100946230056_R04C01 0.932 0.639 0.971 0.421
100946230056_R04C02 0.899 0.604 0.971 0.191
101032570143_R04C02 0.918 0.765 0.951 0.435
101032570152_R04C01 0.934 0.810 0.955 0.358
...
9996247054_R03C01 0.917 0.673 0.932 0.374
9996247054_R03C02 0.885 0.682 0.929 0.393
9996247055_R03C01 0.887 0.671 0.903 0.423
9996247055_R03C02 0.893 0.647 0.962 0.340
9996247056_R05C02 0.957 0.759 0.927 0.402

IlmnID cg00000363 cg00000622 ... ch.X.93511680F \
100946230055_R04C01 0.468 0.010 ... 0.046
100946230056_R04C01 0.397 0.012 ... 0.034
100946230056_R04C02 0.560 0.012 ... 0.038
101032570143_R04C02 0.456 0.011 ... 0.034
101032570152_R04C01 0.372 0.011 ... 0.044
...
9996247054_R03C01 0.374 0.012 ... 0.050
9996247054_R03C02 0.418 0.019 ... 0.047
9996247055_R03C01 0.490 0.014 ... 0.037
9996247055_R03C02 0.467 0.013 ... 0.046
9996247056_R05C02 0.454 0.013 ... 0.049

IlmnID ch.X.938089F ch.X.94051109R ch.X.94260649R \
100946230055_R04C01 0.036 0.031 0.171
100946230056_R04C01 0.040 0.034 0.105
100946230056_R04C02 0.057 0.045 0.253
101032570143_R04C02 0.098 0.058 0.329
101032570152_R04C01 0.058 0.036 0.171
...
9996247054_R03C01 0.037 0.040 0.234
9996247054_R03C02 0.048 0.029 0.155
9996247055_R03C01 0.042 0.026 0.191
9996247055_R03C02 0.045 0.025 0.157
9996247056_R05C02 0.030 0.025 0.052

IlmnID ch.X.967194F ch.X.97129969R ch.X.97133160R \
100946230055_R04C01 0.150 0.108 0.076
100946230056_R04C01 0.149 0.094 0.059
100946230056_R04C02 0.232 0.186 0.090
101032570143_R04C02 0.392 0.447 0.206
101032570152_R04C01 0.350 0.222 0.137
...
9996247054_R03C01 0.355 0.177 0.052
9996247054_R03C02 0.283 0.187 0.065
9996247055_R03C01 0.395 0.248 0.057
9996247055_R03C02 0.384 0.143 0.059
9996247056_R05C02 0.123 0.046 0.045

IlmnID ch.X.97651759F ch.X.97737721F ch.X.98007042R
100946230055_R04C01 0.022 0.063 0.078
100946230056_R04C01 0.019 0.058 0.057
100946230056_R04C02 0.022 0.073 0.128

(continues on next page)

4.4. Custom QC with pOOBAH Vales 47

methylcheck Documentation, Release 0.8.4

(continued from previous page)

101032570143_R04C02 0.032 0.070 0.142
101032570152_R04C01 0.031 0.061 0.152
...
9996247054_R03C01 0.029 0.055 0.099
9996247054_R03C02 0.037 0.086 0.180
9996247055_R03C01 0.031 0.067 0.132
9996247055_R03C02 0.024 0.055 0.097
9996247056_R05C02 0.026 0.065 0.063

[121 rows x 485512 columns]

4.4.2 Load p-values in a dataframe

This is reading in the pOOBAH values to a dataframe, and should have the same dimensions as the betas dataframe.
Each cell in this dataframe is a p-value for each probe for a specific sample. If a p-value is >=0.05, then it’s more
likely that that specific probe for that sample failed. A failed probe means that the true probes signal is not istiguishable
from the background fluorescence.

[19]: p = pd.read_pickle('data/GPL13534/poobah_values.pkl').T
#p.index.name = 'Samples'
print(p.shape)
assert p.shape == betas_nocontrol.shape
print(f'Number of p-values >= 0.05: {(p>=0.05).sum().sum()}')
p = p.T[p.index.sort_values()].T
p.head()

(121, 485512)
Number of p-values >= 0.05: 1546688

[19]: IlmnID cg00000029 cg00000108 cg00000109 cg00000165 \
100946230055_R04C01 0.003 0.000 0.002 0.038
100946230056_R04C01 0.004 0.000 0.002 0.026
100946230056_R04C02 0.018 0.001 0.028 0.096
101032570143_R04C02 0.004 0.001 0.004 0.054
101032570152_R04C01 0.002 0.000 0.002 0.023

IlmnID cg00000236 cg00000289 cg00000292 cg00000321 \
100946230055_R04C01 0.002 0.057 0.0 0.002
100946230056_R04C01 0.001 0.082 0.0 0.001
100946230056_R04C02 0.007 0.130 0.0 0.005
101032570143_R04C02 0.002 0.045 0.0 0.001
101032570152_R04C01 0.001 0.018 0.0 0.002

IlmnID cg00000363 cg00000622 ... ch.X.93511680F \
100946230055_R04C01 0.001 0.0 ... NaN
100946230056_R04C01 0.001 0.0 ... NaN
100946230056_R04C02 0.002 0.0 ... NaN
101032570143_R04C02 0.001 0.0 ... NaN
101032570152_R04C01 0.001 0.0 ... NaN

IlmnID ch.X.938089F ch.X.94051109R ch.X.94260649R \
100946230055_R04C01 0.006 0.004 0.073
100946230056_R04C01 0.004 0.003 0.038
100946230056_R04C02 0.010 0.006 0.127
101032570143_R04C02 0.025 0.014 0.241
101032570152_R04C01 0.014 0.006 0.086

(continues on next page)

48 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

IlmnID ch.X.967194F ch.X.97129969R ch.X.97133160R \
100946230055_R04C01 NaN 0.037 NaN
100946230056_R04C01 NaN 0.035 NaN
100946230056_R04C02 NaN 0.082 NaN
101032570143_R04C02 NaN 0.535 NaN
101032570152_R04C01 NaN 0.117 NaN

IlmnID ch.X.97651759F ch.X.97737721F ch.X.98007042R
100946230055_R04C01 0.001 NaN NaN
100946230056_R04C01 0.001 NaN NaN
100946230056_R04C02 0.001 NaN NaN
101032570143_R04C02 0.003 NaN NaN
101032570152_R04C01 0.003 NaN NaN

[5 rows x 485512 columns]

4.4.3 Mask Beta values where probe fails

When the p-value of a probe for a specific sample >=0.05, it is more likely that the probe has failed, which means
that the beta value for that probe may not be accurate. Because of this, it is a good idea to mask these beta values with
a NULL value.

[24]: cutoff = 0.05
betas_filtered = betas_nocontrol.mask((p>=cutoff), np.nan)

print(betas_filtered.shape)
print(f'Masked {betas_filtered.isna().sum().sum() - betas_nocontrol.isna().sum().
→˓sum()} beta values')
betas_filtered

(121, 485512)
Masked 1546688 beta values

[24]: IlmnID cg00000029 cg00000108 cg00000109 cg00000165 \
100946230055_R04C01 0.864 0.971 0.925 0.288
100946230056_R04C01 0.854 0.978 0.930 0.215
100946230056_R04C02 0.879 0.958 0.866 NaN
101032570143_R04C02 0.837 0.968 0.911 NaN
101032570152_R04C01 0.813 0.971 0.928 0.164
...
9996247054_R03C01 0.840 0.957 0.871 0.253
9996247054_R03C02 0.864 0.963 0.864 0.194
9996247055_R03C01 0.817 0.956 0.842 NaN
9996247055_R03C02 0.801 0.965 0.869 NaN
9996247056_R05C02 0.837 0.976 0.945 0.244

IlmnID cg00000236 cg00000289 cg00000292 cg00000321 \
100946230055_R04C01 0.935 NaN 0.945 0.378
100946230056_R04C01 0.932 NaN 0.971 0.421
100946230056_R04C02 0.899 NaN 0.971 0.191
101032570143_R04C02 0.918 0.765 0.951 0.435
101032570152_R04C01 0.934 0.810 0.955 0.358
...
9996247054_R03C01 0.917 0.673 0.932 0.374
9996247054_R03C02 0.885 NaN 0.929 0.393

(continues on next page)

4.4. Custom QC with pOOBAH Vales 49

methylcheck Documentation, Release 0.8.4

(continued from previous page)

9996247055_R03C01 0.887 0.671 0.903 0.423
9996247055_R03C02 0.893 NaN 0.962 0.340
9996247056_R05C02 0.957 0.759 0.927 0.402

IlmnID cg00000363 cg00000622 ... ch.X.93511680F \
100946230055_R04C01 0.468 0.010 ... 0.046
100946230056_R04C01 0.397 0.012 ... 0.034
100946230056_R04C02 0.560 0.012 ... 0.038
101032570143_R04C02 0.456 0.011 ... 0.034
101032570152_R04C01 0.372 0.011 ... 0.044
...
9996247054_R03C01 0.374 0.012 ... 0.050
9996247054_R03C02 0.418 0.019 ... 0.047
9996247055_R03C01 0.490 0.014 ... 0.037
9996247055_R03C02 0.467 0.013 ... 0.046
9996247056_R05C02 0.454 0.013 ... 0.049

IlmnID ch.X.938089F ch.X.94051109R ch.X.94260649R \
100946230055_R04C01 0.036 0.031 NaN
100946230056_R04C01 0.040 0.034 0.105
100946230056_R04C02 0.057 0.045 NaN
101032570143_R04C02 0.098 0.058 NaN
101032570152_R04C01 0.058 0.036 NaN
...
9996247054_R03C01 0.037 0.040 NaN
9996247054_R03C02 0.048 0.029 0.155
9996247055_R03C01 0.042 0.026 NaN
9996247055_R03C02 0.045 0.025 0.157
9996247056_R05C02 0.030 0.025 0.052

IlmnID ch.X.967194F ch.X.97129969R ch.X.97133160R \
100946230055_R04C01 0.150 0.108 0.076
100946230056_R04C01 0.149 0.094 0.059
100946230056_R04C02 0.232 NaN 0.090
101032570143_R04C02 0.392 NaN 0.206
101032570152_R04C01 0.350 NaN 0.137
...
9996247054_R03C01 0.355 NaN 0.052
9996247054_R03C02 0.283 NaN 0.065
9996247055_R03C01 0.395 NaN 0.057
9996247055_R03C02 0.384 0.143 0.059
9996247056_R05C02 0.123 0.046 0.045

IlmnID ch.X.97651759F ch.X.97737721F ch.X.98007042R
100946230055_R04C01 0.022 0.063 0.078
100946230056_R04C01 0.019 0.058 0.057
100946230056_R04C02 0.022 0.073 0.128
101032570143_R04C02 0.032 0.070 0.142
101032570152_R04C01 0.031 0.061 0.152
...
9996247054_R03C01 0.029 0.055 0.099
9996247054_R03C02 0.037 0.086 0.180
9996247055_R03C01 0.031 0.067 0.132
9996247055_R03C02 0.024 0.055 0.097
9996247056_R05C02 0.026 0.065 0.063

[121 rows x 485512 columns]

50 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

Start here if you have already masked your beta values based on p-values or had that done auto-
matically

4.4.4 Remove Samples based on Percent or Number of Failed Probes

[40]: percent_cutoff = 0.2 #use a percent in decimal format (20% = 0.2)
qc_betas = betas_filtered[~((betas_filtered.T.isna().sum() / betas_filtered.shape[1])
→˓> 0.2)]

#if you want to remove samples based off a number threshold rather than a percentage,
→˓use the following 2 lines:
#number_cutoff = 20000
#qc_betas = betas_filtered[~(betas_filtered.T.isna().sum() >= number_cutoff)]

print(f'{betas_filtered.shape[0] - qc_betas.shape[0]} sample(s) removed because of
→˓pOOBAH failure')
print(f'Sample(s) removed: {set(betas_filtered.index) - set(qc_betas.index)}')
print(qc_betas.shape)
qc_betas

1 sample(s) removed because of poobah failure
Sample(s) removed: {'101032570169_R04C02'}
(120, 485512)

[40]: IlmnID cg00000029 cg00000108 cg00000109 cg00000165 \
100946230055_R04C01 0.864 0.971 0.925 0.288
100946230056_R04C01 0.854 0.978 0.930 0.215
100946230056_R04C02 0.879 0.958 0.866 NaN
101032570143_R04C02 0.837 0.968 0.911 NaN
101032570152_R04C01 0.813 0.971 0.928 0.164
...
9996247054_R03C01 0.840 0.957 0.871 0.253
9996247054_R03C02 0.864 0.963 0.864 0.194
9996247055_R03C01 0.817 0.956 0.842 NaN
9996247055_R03C02 0.801 0.965 0.869 NaN
9996247056_R05C02 0.837 0.976 0.945 0.244

IlmnID cg00000236 cg00000289 cg00000292 cg00000321 \
100946230055_R04C01 0.935 NaN 0.945 0.378
100946230056_R04C01 0.932 NaN 0.971 0.421
100946230056_R04C02 0.899 NaN 0.971 0.191
101032570143_R04C02 0.918 0.765 0.951 0.435
101032570152_R04C01 0.934 0.810 0.955 0.358
...
9996247054_R03C01 0.917 0.673 0.932 0.374
9996247054_R03C02 0.885 NaN 0.929 0.393
9996247055_R03C01 0.887 0.671 0.903 0.423
9996247055_R03C02 0.893 NaN 0.962 0.340
9996247056_R05C02 0.957 0.759 0.927 0.402

IlmnID cg00000363 cg00000622 ... ch.X.93511680F \
100946230055_R04C01 0.468 0.010 ... 0.046
100946230056_R04C01 0.397 0.012 ... 0.034
100946230056_R04C02 0.560 0.012 ... 0.038
101032570143_R04C02 0.456 0.011 ... 0.034
101032570152_R04C01 0.372 0.011 ... 0.044
...
9996247054_R03C01 0.374 0.012 ... 0.050

(continues on next page)

4.4. Custom QC with pOOBAH Vales 51

methylcheck Documentation, Release 0.8.4

(continued from previous page)

9996247054_R03C02 0.418 0.019 ... 0.047
9996247055_R03C01 0.490 0.014 ... 0.037
9996247055_R03C02 0.467 0.013 ... 0.046
9996247056_R05C02 0.454 0.013 ... 0.049

IlmnID ch.X.938089F ch.X.94051109R ch.X.94260649R \
100946230055_R04C01 0.036 0.031 NaN
100946230056_R04C01 0.040 0.034 0.105
100946230056_R04C02 0.057 0.045 NaN
101032570143_R04C02 0.098 0.058 NaN
101032570152_R04C01 0.058 0.036 NaN
...
9996247054_R03C01 0.037 0.040 NaN
9996247054_R03C02 0.048 0.029 0.155
9996247055_R03C01 0.042 0.026 NaN
9996247055_R03C02 0.045 0.025 0.157
9996247056_R05C02 0.030 0.025 0.052

IlmnID ch.X.967194F ch.X.97129969R ch.X.97133160R \
100946230055_R04C01 0.150 0.108 0.076
100946230056_R04C01 0.149 0.094 0.059
100946230056_R04C02 0.232 NaN 0.090
101032570143_R04C02 0.392 NaN 0.206
101032570152_R04C01 0.350 NaN 0.137
...
9996247054_R03C01 0.355 NaN 0.052
9996247054_R03C02 0.283 NaN 0.065
9996247055_R03C01 0.395 NaN 0.057
9996247055_R03C02 0.384 0.143 0.059
9996247056_R05C02 0.123 0.046 0.045

IlmnID ch.X.97651759F ch.X.97737721F ch.X.98007042R
100946230055_R04C01 0.022 0.063 0.078
100946230056_R04C01 0.019 0.058 0.057
100946230056_R04C02 0.022 0.073 0.128
101032570143_R04C02 0.032 0.070 0.142
101032570152_R04C01 0.031 0.061 0.152
...
9996247054_R03C01 0.029 0.055 0.099
9996247054_R03C02 0.037 0.086 0.180
9996247055_R03C01 0.031 0.067 0.132
9996247055_R03C02 0.024 0.055 0.097
9996247056_R05C02 0.026 0.065 0.063

[120 rows x 485512 columns]

4.4.5 Drop out Probes with a Percentage of NaNs

If you want to drop the probes with either all NaNs or a percentage of NaNs, use this code below. However, there are
some scenarios where you will have to add back those probe columns, so only use this step if you have to.

[46]: threshold = 0.95
final_betas = qc_betas.dropna(axis=1, thresh = int(threshold*qc_betas.shape[0]))
print(f'{qc_betas.shape[1] - final_betas.shape[1]} probe(s) removed because of NaNs')
#print(f'Sample(s) removed: {set(qc_betas.columns) - set(final_betas.columns)}')
→˓#could be a long output (continues on next page)

52 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

final_betas

40600 probe(s) removed because of NaNs

[46]: IlmnID cg00000029 cg00000108 cg00000236 cg00000292 \
100946230055_R04C01 0.864 0.971 0.935 0.945
100946230056_R04C01 0.854 0.978 0.932 0.971
100946230056_R04C02 0.879 0.958 0.899 0.971
101032570143_R04C02 0.837 0.968 0.918 0.951
101032570152_R04C01 0.813 0.971 0.934 0.955
...
9996247054_R03C01 0.840 0.957 0.917 0.932
9996247054_R03C02 0.864 0.963 0.885 0.929
9996247055_R03C01 0.817 0.956 0.887 0.903
9996247055_R03C02 0.801 0.965 0.893 0.962
9996247056_R05C02 0.837 0.976 0.957 0.927

IlmnID cg00000321 cg00000363 cg00000622 cg00000658 \
100946230055_R04C01 0.378 0.468 0.010 0.862
100946230056_R04C01 0.421 0.397 0.012 0.907
100946230056_R04C02 0.191 0.560 0.012 0.871
101032570143_R04C02 0.435 0.456 0.011 0.912
101032570152_R04C01 0.358 0.372 0.011 0.835
...
9996247054_R03C01 0.374 0.374 0.012 0.904
9996247054_R03C02 0.393 0.418 0.019 0.884
9996247055_R03C01 0.423 0.490 0.014 0.871
9996247055_R03C02 0.340 0.467 0.013 0.892
9996247056_R05C02 0.402 0.454 0.013 0.912

IlmnID cg00000714 cg00000721 ... ch.X.92543860F \
100946230055_R04C01 0.249 0.936 ... 0.026
100946230056_R04C01 0.278 0.954 ... 0.022
100946230056_R04C02 0.235 0.923 ... 0.029
101032570143_R04C02 0.343 0.938 ... 0.033
101032570152_R04C01 0.333 0.957 ... 0.027
...
9996247054_R03C01 0.411 0.923 ... 0.030
9996247054_R03C02 0.335 0.927 ... 0.033
9996247055_R03C01 0.391 0.894 ... 0.026
9996247055_R03C02 0.309 0.932 ... 0.033
9996247056_R05C02 0.299 0.945 ... 0.029

IlmnID ch.X.92554290F ch.X.93511680F ch.X.938089F \
100946230055_R04C01 0.023 0.046 0.036
100946230056_R04C01 0.023 0.034 0.040
100946230056_R04C02 0.022 0.038 0.057
101032570143_R04C02 0.038 0.034 0.098
101032570152_R04C01 0.032 0.044 0.058
...
9996247054_R03C01 0.028 0.050 0.037
9996247054_R03C02 0.037 0.047 0.048
9996247055_R03C01 0.032 0.037 0.042
9996247055_R03C02 0.028 0.046 0.045
9996247056_R05C02 0.030 0.049 0.030

IlmnID ch.X.94051109R ch.X.967194F ch.X.97133160R \
100946230055_R04C01 0.031 0.150 0.076

(continues on next page)

4.4. Custom QC with pOOBAH Vales 53

methylcheck Documentation, Release 0.8.4

(continued from previous page)

100946230056_R04C01 0.034 0.149 0.059
100946230056_R04C02 0.045 0.232 0.090
101032570143_R04C02 0.058 0.392 0.206
101032570152_R04C01 0.036 0.350 0.137
...
9996247054_R03C01 0.040 0.355 0.052
9996247054_R03C02 0.029 0.283 0.065
9996247055_R03C01 0.026 0.395 0.057
9996247055_R03C02 0.025 0.384 0.059
9996247056_R05C02 0.025 0.123 0.045

IlmnID ch.X.97651759F ch.X.97737721F ch.X.98007042R
100946230055_R04C01 0.022 0.063 0.078
100946230056_R04C01 0.019 0.058 0.057
100946230056_R04C02 0.022 0.073 0.128
101032570143_R04C02 0.032 0.070 0.142
101032570152_R04C01 0.031 0.061 0.152
...
9996247054_R03C01 0.029 0.055 0.099
9996247054_R03C02 0.037 0.086 0.180
9996247055_R03C01 0.031 0.067 0.132
9996247055_R03C02 0.024 0.055 0.097
9996247056_R05C02 0.026 0.065 0.063

[120 rows x 444912 columns]

Another way to tell if your sample is bad is to predict the sex of your samples and compare the predicted sex to the
actual sex, if that information is available. If the predicted sex does not match the actual sex, this is an indicator that
the sample needs to be investigated further, and could potentially be removed.

If you are planning on using your beta values for a machine learning model, you may want to filter out the sex probes
to get rid of any sex bias in your model.

4.5 Outlier detection using Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) is one method for comparing the similarity of samples–similar to PCA. MDS based
on euclidean distance will also have identical results to PCA, because minimizing linear distance between points is
effectively the same as maximizing linear correlation (the latter being what PCA does).

See StatQuest’s very helpful video on MDS and PCoA for more details.

methylcheck allows users the option of filtering their data based on the results of MDS. The standard cut off is 1.5
standard deviations from the mean of the data, however users have the ability to adjust the cut off value if they are not
satisfied by the filtering. After examining the MDS plot, press ‘enter’ to accept the cut-off as it is, or enter a new value
and rerun the plot.

We will walk through an example of how to use MDS with this dataset from GEO: GSE111629. This is a large dataset
(n=571) of patients with Parkinson’s Disease (n=335) and a group of controls (n=237). These blood samples were run
on Illumina’s 450k arrays.

We downloaded the data from GEO and processed it with methylprep using the following command:

>>> python -m methylprep process -d <filepath> --all

WARNING: This is a huge dataset and methylprep will take +8 hours to process it. It will also eat up a lot of
storage on your machine. We chose this data because it demonstrates the utility of the MDS function. We recommend

54 Chapter 4. Tutorials and Guides

quality-control-example.html#Predicting-Sex
filtering-probes.html#Filtering-sex-linked-probes-and-control-probes
https://www.youtube.com/watch?v=GEn-_dAyYME
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111629

methylcheck Documentation, Release 0.8.4

users pick a different dataset to follow along this example!

[1]: import methylcheck
import pandas as pd
from pathlib import Path
filepath = Path('/Users/patriciagirardi/methylcheck_tutorial')

[2]: df = pd.read_pickle('~/methylcheck_tutorial/beta_values.pkl')
metadata = pd.read_pickle('~/methylcheck_tutorial/GSE111629_GPL13534_meta_data.pkl')
metadata.head()

[2]: GSM_ID Sample_Name source \
0 GSM3035401 genomic DNA from 3999979001_R01C01 X3999979001_R01C01
1 GSM3035402 genomic DNA from 3999979001_R01C02 X3999979001_R01C02
2 GSM3035403 genomic DNA from 3999979001_R02C01 X3999979001_R02C01
3 GSM3035404 genomic DNA from 3999979001_R02C02 X3999979001_R02C02
4 GSM3035405 genomic DNA from 3999979001_R03C01 X3999979001_R03C01

platform title disease state age \
0 GPL13534 genomic DNA from 3999979001_R01C01 Parkinson's disease (PD) 74
1 GPL13534 genomic DNA from 3999979001_R01C02 PD-free control 73
2 GPL13534 genomic DNA from 3999979001_R02C01 Parkinson's disease (PD) 62
3 GPL13534 genomic DNA from 3999979001_R02C02 PD-free control 72
4 GPL13534 genomic DNA from 3999979001_R03C01 PD-free control 72

gender ethnicity tissue Sample_ID Sentrix_ID \
0 Female Caucasian whole blood 3999979001_R01C01 3999979001
1 Female Caucasian whole blood 3999979001_R01C02 3999979001
2 Male Caucasian whole blood 3999979001_R02C01 3999979001
3 Male Caucasian whole blood 3999979001_R02C02 3999979001
4 Female Caucasian whole blood 3999979001_R03C01 3999979001

Sentrix_Position description
0 R01C01
1 R01C02
2 R02C01
3 R02C02
4 R03C01

[3]: methylcheck.beta_mds_plot(df, filter_stdev=2, poobah=filepath)

INFO:methylcheck.samples.postprocessQC:81518.8 probe(s) [avg per sample] were missing
→˓values and removed from MDS calculations; 485512 remaining.
INFO:numexpr.utils:NumExpr defaulting to 8 threads.

4.5. Outlier detection using Multidimensional Scaling (MDS) 55

methylcheck Documentation, Release 0.8.4

571 original samples; 542 after filtering
Your scale factor was: 2

[3]: 3999979001_R01C01 3999979001_R01C02 3999979001_R02C01 \
IlmnID
cg00000029 0.586 0.553 0.586
cg00000108 0.978 0.974 0.972
cg00000109 0.917 0.925 0.905
cg00000165 0.221 0.208 NaN
cg00000236 0.812 0.881 0.867
...
ch.X.97129969R NaN 0.088 NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.032 0.030 0.044
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R02C02 3999979001_R03C01 3999979001_R03C02 \
IlmnID
cg00000029 0.551 0.533 0.698
cg00000108 0.973 0.968 0.973
cg00000109 0.934 0.922 0.920
cg00000165 0.185 NaN NaN
cg00000236 0.888 0.843 0.852
...

(continues on next page)

56 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.X.97129969R NaN 0.112 NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.031 0.029 0.043
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R04C01 3999979001_R04C02 3999979001_R05C01 \
IlmnID
cg00000029 0.713 0.413 0.367
cg00000108 0.971 0.967 0.970
cg00000109 0.913 0.918 0.933
cg00000165 NaN NaN 0.160
cg00000236 0.889 0.815 0.809
...
ch.X.97129969R 0.102 NaN NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.024 0.038 0.038
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R05C02 ... 9721367028_R01C02 9721367028_R02C02 \
IlmnID ...
cg00000029 0.655 ... 0.706 0.719
cg00000108 0.976 ... 0.969 0.974
cg00000109 0.923 ... 0.917 0.929
cg00000165 0.209 ... NaN 0.209
cg00000236 0.887 ... 0.899 0.888
...
ch.X.97129969R 0.118 ... NaN 0.110
ch.X.97133160R NaN ... NaN NaN
ch.X.97651759F 0.024 ... 0.028 0.025
ch.X.97737721F NaN ... NaN NaN
ch.X.98007042R NaN ... NaN NaN

9721367028_R03C01 9721367028_R03C02 9721367028_R04C01 \
IlmnID
cg00000029 0.521 0.643 0.531
cg00000108 0.970 0.973 0.972
cg00000109 0.930 0.924 0.930
cg00000165 NaN NaN NaN
cg00000236 0.902 0.889 0.875
...
ch.X.97129969R 0.103 NaN NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.032 0.039 0.041
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

9721367028_R04C02 9721367028_R05C01 9721367028_R05C02 \
IlmnID
cg00000029 0.578 0.518 0.606
cg00000108 0.968 0.969 0.975
cg00000109 0.905 0.893 0.912
cg00000165 NaN NaN NaN
cg00000236 0.836 0.884 0.868
...
ch.X.97129969R NaN 0.104 0.077

(continues on next page)

4.5. Outlier detection using Multidimensional Scaling (MDS) 57

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.042 0.027 0.027
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

9721367028_R06C01 9721367028_R06C02
IlmnID
cg00000029 NaN 0.532
cg00000108 0.966 0.968
cg00000109 0.908 0.912
cg00000165 NaN NaN
cg00000236 0.882 0.874
...
ch.X.97129969R NaN NaN
ch.X.97133160R NaN NaN
ch.X.97651759F 0.022 0.043
ch.X.97737721F NaN NaN
ch.X.98007042R NaN NaN

[485512 rows x 542 columns]

There are a few things to note with the MDS plot shown above. We’ve color-coded the samples in the plot by their
poobah value failure rates; the samples with the highest failure rates (yellow, orange) tend to separate from the two
clusters.

The other thing to note is that there are two clusters. With our color-coding scheme, we can only hope that these are
the two groups (Parkinson’s Disease patients vs. controls). So we need to adjust our color-coding to examine that
possibility!

[4]: metadata['disease state'].value_counts()

[4]: Parkinson's disease (PD) 335
PD-free control 237
Name: disease state, dtype: int64

[5]: disease_state = metadata[['Sample_ID', 'disease state']]
disease_labels = dict(zip(disease_state['Sample_ID'], disease_state['disease state']))

There’s a small error in the metadata where one of the rows has an empty sample ID column, which will cause an error
when we try to plot the mds based on the labels. See below how we call an empty string key from the labels dictionary
and still get a value for the disease state. So we’ll make sure to drop that key/value pair out from our dictionary before
we continue.

[6]: disease_labels['']

[6]: "Parkinson's disease (PD)"

[7]: del disease_labels['']

Now our dictionary won’t error when we try to label samples in our MDS plot, so we can proceed with plotting the
control vs. PD color-coding.

[8]: methylcheck.beta_mds_plot(df, filter_stdev=2, labels=disease_labels)

INFO:methylcheck.samples.postprocessQC:81518.8 probe(s) [avg per sample] were missing
→˓values and removed from MDS calculations; 485512 remaining.

58 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

571 original samples; 542 after filtering
Your scale factor was: 2

[8]: 3999979001_R01C01 3999979001_R01C02 3999979001_R02C01 \
IlmnID
cg00000029 0.586 0.553 0.586
cg00000108 0.978 0.974 0.972
cg00000109 0.917 0.925 0.905
cg00000165 0.221 0.208 NaN
cg00000236 0.812 0.881 0.867
...
ch.X.97129969R NaN 0.088 NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.032 0.030 0.044
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R02C02 3999979001_R03C01 3999979001_R03C02 \
IlmnID
cg00000029 0.551 0.533 0.698
cg00000108 0.973 0.968 0.973
cg00000109 0.934 0.922 0.920
cg00000165 0.185 NaN NaN
cg00000236 0.888 0.843 0.852
...

(continues on next page)

4.5. Outlier detection using Multidimensional Scaling (MDS) 59

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.X.97129969R NaN 0.112 NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.031 0.029 0.043
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R04C01 3999979001_R04C02 3999979001_R05C01 \
IlmnID
cg00000029 0.713 0.413 0.367
cg00000108 0.971 0.967 0.970
cg00000109 0.913 0.918 0.933
cg00000165 NaN NaN 0.160
cg00000236 0.889 0.815 0.809
...
ch.X.97129969R 0.102 NaN NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.024 0.038 0.038
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R05C02 ... 9721367028_R01C02 9721367028_R02C02 \
IlmnID ...
cg00000029 0.655 ... 0.706 0.719
cg00000108 0.976 ... 0.969 0.974
cg00000109 0.923 ... 0.917 0.929
cg00000165 0.209 ... NaN 0.209
cg00000236 0.887 ... 0.899 0.888
...
ch.X.97129969R 0.118 ... NaN 0.110
ch.X.97133160R NaN ... NaN NaN
ch.X.97651759F 0.024 ... 0.028 0.025
ch.X.97737721F NaN ... NaN NaN
ch.X.98007042R NaN ... NaN NaN

9721367028_R03C01 9721367028_R03C02 9721367028_R04C01 \
IlmnID
cg00000029 0.521 0.643 0.531
cg00000108 0.970 0.973 0.972
cg00000109 0.930 0.924 0.930
cg00000165 NaN NaN NaN
cg00000236 0.902 0.889 0.875
...
ch.X.97129969R 0.103 NaN NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.032 0.039 0.041
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

9721367028_R04C02 9721367028_R05C01 9721367028_R05C02 \
IlmnID
cg00000029 0.578 0.518 0.606
cg00000108 0.968 0.969 0.975
cg00000109 0.905 0.893 0.912
cg00000165 NaN NaN NaN
cg00000236 0.836 0.884 0.868
...
ch.X.97129969R NaN 0.104 0.077

(continues on next page)

60 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.042 0.027 0.027
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

9721367028_R06C01 9721367028_R06C02
IlmnID
cg00000029 NaN 0.532
cg00000108 0.966 0.968
cg00000109 0.908 0.912
cg00000165 NaN NaN
cg00000236 0.882 0.874
...
ch.X.97129969R NaN NaN
ch.X.97133160R NaN NaN
ch.X.97651759F 0.022 0.043
ch.X.97737721F NaN NaN
ch.X.98007042R NaN NaN

[485512 rows x 542 columns]

It appears that disease state isn’t responsible for the clustering we’re seeing here, based on these results. The PD and
control patients are evenly interspersed among the two clusters. There might be some other attribute in the metadata
responsible for this, though. The best candidate would be something with a binary result in this dataset, like patient
gender. So let’s examine what the MDS plot looks like when color-coding by patient gender.

[9]: gender = metadata[['Sample_ID', 'gender']]
gender_labels = dict(zip(gender['Sample_ID'], gender['gender']))
del gender_labels['']

methylcheck.beta_mds_plot(df, filter_stdev=2, labels=gender_labels)

INFO:methylcheck.samples.postprocessQC:81518.8 probe(s) [avg per sample] were missing
→˓values and removed from MDS calculations; 485512 remaining.

4.5. Outlier detection using Multidimensional Scaling (MDS) 61

methylcheck Documentation, Release 0.8.4

571 original samples; 542 after filtering
Your scale factor was: 2

[9]: 3999979001_R01C01 3999979001_R01C02 3999979001_R02C01 \
IlmnID
cg00000029 0.586 0.553 0.586
cg00000108 0.978 0.974 0.972
cg00000109 0.917 0.925 0.905
cg00000165 0.221 0.208 NaN
cg00000236 0.812 0.881 0.867
...
ch.X.97129969R NaN 0.088 NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.032 0.030 0.044
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R02C02 3999979001_R03C01 3999979001_R03C02 \
IlmnID
cg00000029 0.551 0.533 0.698
cg00000108 0.973 0.968 0.973
cg00000109 0.934 0.922 0.920
cg00000165 0.185 NaN NaN
cg00000236 0.888 0.843 0.852
...

(continues on next page)

62 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.X.97129969R NaN 0.112 NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.031 0.029 0.043
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R04C01 3999979001_R04C02 3999979001_R05C01 \
IlmnID
cg00000029 0.713 0.413 0.367
cg00000108 0.971 0.967 0.970
cg00000109 0.913 0.918 0.933
cg00000165 NaN NaN 0.160
cg00000236 0.889 0.815 0.809
...
ch.X.97129969R 0.102 NaN NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.024 0.038 0.038
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

3999979001_R05C02 ... 9721367028_R01C02 9721367028_R02C02 \
IlmnID ...
cg00000029 0.655 ... 0.706 0.719
cg00000108 0.976 ... 0.969 0.974
cg00000109 0.923 ... 0.917 0.929
cg00000165 0.209 ... NaN 0.209
cg00000236 0.887 ... 0.899 0.888
...
ch.X.97129969R 0.118 ... NaN 0.110
ch.X.97133160R NaN ... NaN NaN
ch.X.97651759F 0.024 ... 0.028 0.025
ch.X.97737721F NaN ... NaN NaN
ch.X.98007042R NaN ... NaN NaN

9721367028_R03C01 9721367028_R03C02 9721367028_R04C01 \
IlmnID
cg00000029 0.521 0.643 0.531
cg00000108 0.970 0.973 0.972
cg00000109 0.930 0.924 0.930
cg00000165 NaN NaN NaN
cg00000236 0.902 0.889 0.875
...
ch.X.97129969R 0.103 NaN NaN
ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.032 0.039 0.041
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

9721367028_R04C02 9721367028_R05C01 9721367028_R05C02 \
IlmnID
cg00000029 0.578 0.518 0.606
cg00000108 0.968 0.969 0.975
cg00000109 0.905 0.893 0.912
cg00000165 NaN NaN NaN
cg00000236 0.836 0.884 0.868
...
ch.X.97129969R NaN 0.104 0.077

(continues on next page)

4.5. Outlier detection using Multidimensional Scaling (MDS) 63

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.X.97133160R NaN NaN NaN
ch.X.97651759F 0.042 0.027 0.027
ch.X.97737721F NaN NaN NaN
ch.X.98007042R NaN NaN NaN

9721367028_R06C01 9721367028_R06C02
IlmnID
cg00000029 NaN 0.532
cg00000108 0.966 0.968
cg00000109 0.908 0.912
cg00000165 NaN NaN
cg00000236 0.882 0.874
...
ch.X.97129969R NaN NaN
ch.X.97133160R NaN NaN
ch.X.97651759F 0.022 0.043
ch.X.97737721F NaN NaN
ch.X.98007042R NaN NaN

[485512 rows x 542 columns]

It looks like this might be the culprit of the two clusters in the MDS plot! There are a few outliers, but for the most
part, the two clusters are made up of one gender each.

Utilizing one of the functions covered in our Filtering Probes section, we can pull out the beta values from X/Y
probes and just examine beta values from probes on the autosomal chromosomes. If MDS is picking up on differences
between patient sex and clustering the patients accordingly, we might be able to get at an underlying difference by
removing sex from the equation.

[11]: no_sex_probes = methylcheck.exclude_sex_control_probes(df, array='450k', no_sex=True,
→˓no_control=True)

methylcheck.beta_mds_plot(no_sex_probes, filter_stdev=2, labels=gender_labels)

INFO:methylcheck.samples.postprocessQC:79013.0 probe(s) [avg per sample] were missing
→˓values and removed from MDS calculations; 473864 remaining.

64 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

571 original samples; 539 after filtering
Your scale factor was: 2

[11]: 3999979001_R01C01 3999979001_R01C02 3999979001_R02C01 \
IlmnID
cg00000029 0.586 0.553 0.586
cg00000108 0.978 0.974 0.972
cg00000109 0.917 0.925 0.905
cg00000165 0.221 0.208 NaN
cg00000236 0.812 0.881 0.867
...
ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

3999979001_R02C02 3999979001_R03C01 3999979001_R03C02 \
IlmnID
cg00000029 0.551 0.533 0.698
cg00000108 0.973 0.968 0.973
cg00000109 0.934 0.922 0.920
cg00000165 0.185 NaN NaN
cg00000236 0.888 0.843 0.852
...

(continues on next page)

4.5. Outlier detection using Multidimensional Scaling (MDS) 65

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

3999979001_R04C01 3999979001_R05C01 3999979001_R05C02 \
IlmnID
cg00000029 0.713 0.367 0.655
cg00000108 0.971 0.970 0.976
cg00000109 0.913 0.933 0.923
cg00000165 NaN 0.160 0.209
cg00000236 0.889 0.809 0.887
...
ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

3999979001_R06C01 ... 9721367028_R01C02 9721367028_R02C02 \
IlmnID ...
cg00000029 0.695 ... 0.706 0.719
cg00000108 0.976 ... 0.969 0.974
cg00000109 0.925 ... 0.917 0.929
cg00000165 0.265 ... NaN 0.209
cg00000236 0.880 ... 0.899 0.888
...
ch.9.98937537R NaN ... NaN NaN
ch.9.98957343R NaN ... NaN NaN
ch.9.98959675F NaN ... NaN NaN
ch.9.98989607R NaN ... NaN NaN
ch.9.991104F NaN ... NaN NaN

9721367028_R03C01 9721367028_R03C02 9721367028_R04C01 \
IlmnID
cg00000029 0.521 0.643 0.531
cg00000108 0.970 0.973 0.972
cg00000109 0.930 0.924 0.930
cg00000165 NaN NaN NaN
cg00000236 0.902 0.889 0.875
...
ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

9721367028_R04C02 9721367028_R05C01 9721367028_R05C02 \
IlmnID
cg00000029 0.578 0.518 0.606
cg00000108 0.968 0.969 0.975
cg00000109 0.905 0.893 0.912
cg00000165 NaN NaN NaN
cg00000236 0.836 0.884 0.868
...
ch.9.98937537R NaN NaN NaN

(continues on next page)

66 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

9721367028_R06C01 9721367028_R06C02
IlmnID
cg00000029 NaN 0.532
cg00000108 0.966 0.968
cg00000109 0.908 0.912
cg00000165 NaN NaN
cg00000236 0.882 0.874
...
ch.9.98937537R NaN NaN
ch.9.98957343R NaN NaN
ch.9.98959675F NaN NaN
ch.9.98989607R NaN NaN
ch.9.991104F NaN NaN

[473864 rows x 539 columns]

We lost the separation between clusters as a result of pulling out sex probes. There’s still a chance that there is some
kind of grouping going on with PD/control patients (for example, the top half of the data is all PD patients, while the
bottom half is all control patients). So we’ll color-code by disease state to verify whether or not there’s any grouping
going on.

[12]: methylcheck.beta_mds_plot(no_sex_probes, filter_stdev=2, labels=disease_labels)

INFO:methylcheck.samples.postprocessQC:79013.0 probe(s) [avg per sample] were missing
→˓values and removed from MDS calculations; 473864 remaining.

4.5. Outlier detection using Multidimensional Scaling (MDS) 67

methylcheck Documentation, Release 0.8.4

571 original samples; 539 after filtering
Your scale factor was: 2

[12]: 3999979001_R01C01 3999979001_R01C02 3999979001_R02C01 \
IlmnID
cg00000029 0.586 0.553 0.586
cg00000108 0.978 0.974 0.972
cg00000109 0.917 0.925 0.905
cg00000165 0.221 0.208 NaN
cg00000236 0.812 0.881 0.867
...
ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

3999979001_R02C02 3999979001_R03C01 3999979001_R03C02 \
IlmnID
cg00000029 0.551 0.533 0.698
cg00000108 0.973 0.968 0.973
cg00000109 0.934 0.922 0.920
cg00000165 0.185 NaN NaN
cg00000236 0.888 0.843 0.852
...

(continues on next page)

68 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

3999979001_R04C01 3999979001_R05C01 3999979001_R05C02 \
IlmnID
cg00000029 0.713 0.367 0.655
cg00000108 0.971 0.970 0.976
cg00000109 0.913 0.933 0.923
cg00000165 NaN 0.160 0.209
cg00000236 0.889 0.809 0.887
...
ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

3999979001_R06C01 ... 9721367028_R01C02 9721367028_R02C02 \
IlmnID ...
cg00000029 0.695 ... 0.706 0.719
cg00000108 0.976 ... 0.969 0.974
cg00000109 0.925 ... 0.917 0.929
cg00000165 0.265 ... NaN 0.209
cg00000236 0.880 ... 0.899 0.888
...
ch.9.98937537R NaN ... NaN NaN
ch.9.98957343R NaN ... NaN NaN
ch.9.98959675F NaN ... NaN NaN
ch.9.98989607R NaN ... NaN NaN
ch.9.991104F NaN ... NaN NaN

9721367028_R03C01 9721367028_R03C02 9721367028_R04C01 \
IlmnID
cg00000029 0.521 0.643 0.531
cg00000108 0.970 0.973 0.972
cg00000109 0.930 0.924 0.930
cg00000165 NaN NaN NaN
cg00000236 0.902 0.889 0.875
...
ch.9.98937537R NaN NaN NaN
ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

9721367028_R04C02 9721367028_R05C01 9721367028_R05C02 \
IlmnID
cg00000029 0.578 0.518 0.606
cg00000108 0.968 0.969 0.975
cg00000109 0.905 0.893 0.912
cg00000165 NaN NaN NaN
cg00000236 0.836 0.884 0.868
...
ch.9.98937537R NaN NaN NaN

(continues on next page)

4.5. Outlier detection using Multidimensional Scaling (MDS) 69

methylcheck Documentation, Release 0.8.4

(continued from previous page)

ch.9.98957343R NaN NaN NaN
ch.9.98959675F NaN NaN NaN
ch.9.98989607R NaN NaN NaN
ch.9.991104F NaN NaN NaN

9721367028_R06C01 9721367028_R06C02
IlmnID
cg00000029 NaN 0.532
cg00000108 0.966 0.968
cg00000109 0.908 0.912
cg00000165 NaN NaN
cg00000236 0.882 0.874
...
ch.9.98937537R NaN NaN
ch.9.98957343R NaN NaN
ch.9.98959675F NaN NaN
ch.9.98989607R NaN NaN
ch.9.991104F NaN NaN

[473864 rows x 539 columns]

It appears that the differences between these two disease states aren’t being picked up by MDS in a meaningful way.
We’ll do one more MDS plot on these filtered probes to check how many of those outlier samples have high detection
p-value failure rates.

Also, we can define a variable here to access the samples that pass after they’ve been filtered by MDS. Then, we can
compare that beta distribution to the original beta distribution to see how the MDS filtering affected it.

[13]: mds_filtered = methylcheck.beta_mds_plot(no_sex_probes, filter_stdev=1.5,
→˓poobah=filepath)

INFO:methylcheck.samples.postprocessQC:79013.0 probe(s) [avg per sample] were missing
→˓values and removed from MDS calculations; 473864 remaining.

70 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

571 original samples; 448 after filtering
Your scale factor was: 1.5

[14]: methylcheck.mean_beta_compare(df, mds_filtered)

4.5. Outlier detection using Multidimensional Scaling (MDS) 71

methylcheck Documentation, Release 0.8.4

The difference is a bit subtle since even the low quality data in this dataset is relatively high quality, but you can see
that the green curve (MDS filtered samples) has higher and tighter peaks than the blue curve (unfiltered data). This
means we were able to eliminate some of the samples that had a lot of beta values falling in that midrange between the
peaks.

4.6 API Reference

methylcheck.cli
methylcheck.run_pipeline(df, **kwargs) Run a variety of probe and sample filters in tandem, then

plot results
methylcheck.run_qc(path) Generates all QC plots for a dataset in the path provided.
methylcheck.read_geo(filepath[, verbose, . . .]) Use to load preprocessed GEO data into methylcheck.

Attempts to find the sample beta/M_values
methylcheck.load([filepath, format, . . .]) Methylsuite’s all-purpose data loading function.
methylcheck.load_both([filepath, format, . . .]) Creates and returns TWO objects (data and meta_data)

from the given filepath.
methylcheck.qc_signal_intensity([. . .]) Suggests sample outliers based on methylated and un-

methylated signal intensity.
methylcheck.plot_M_vs_U ([. . .]) plot methylated vs unmethylated probe intensities

Continued on next page

72 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

Table 1 – continued from previous page
methylcheck.plot_controls([path, subset,
. . .])

internal array QC controls (available with the
–save_control or –all methylprep process option)

methylcheck.plot_beta_by_type(beta_df[,
. . .])

compare betas for type I and II probes – (inspired by the
plotBetasByType() function)

methylcheck.probes
methylcheck.list_problem_probes(array[,
. . .])

Function to create a list of probes to exclude from down-
stream processes.

methylcheck.exclude_probes(df, probe_list) Exclude probes from a dataframe of sample beta values.
methylcheck.exclude_sex_control_probes(df,
array)

Exclude probes from an array, and return a filtered array.

methylcheck.drop_nan_probes(df[, silent,
. . .])

accounts for df shape (probes in rows or cols) so
dropna() will work.

methylcheck.samples
methylcheck.sample_plot(df, **kwargs) A more intuitive alias of beta_density_plot(),

since not all values are beta distributions.
methylcheck.beta_density_plot(df[, ver-
bose, . . .])

Returns a plot of beta values for each sample in a batch
of samples as a separate line.

methylcheck.mean_beta_plot(df[, verbose,
. . .])

Returns a plot of the average beta values for all probes
in a batch of samples.

methylcheck.mean_beta_compare(df1, df2[,
. . .])

Use this function to compare two dataframes, pre-vs-
post filtering and removal of outliers.

methylcheck.beta_mds_plot(df[, . . .]) Performs multidimensional scaling on a dataframe of
samples

methylcheck.combine_mds(*args, **kwargs) To combine (or segment) datasets for multidimensional
scaling analysis

methylcheck.cumulative_sum_beta_distribution(df)Attempts to filter outlier samples based on the cumula-
tive area under the curve exceeding a reasonable value
(cutoff).

methylcheck.predict
methylcheck.get_sex(data_source[, . . .]) This will calculate and predict the sex of each sample.
methylcheck.assign(df[, two_pass]) Manually and interactively assign each sample to a

group, based on beta-value distribution shape.

4.6.1 methylcheck.cli

Functions

build_parser()
cli_ReportPDF(cmd_args)
cli_app()
cli_controls_report(cmd_args)
cli_qc(cmd_args)
detect_array(df[, returns, on_lambda]) Determines array type using number of probes columns

in df.

Classes

DefaultParser([prog, usage, description, . . .])

4.6. API Reference 73

methylcheck Documentation, Release 0.8.4

4.6.2 methylcheck.run_pipeline

methylcheck.run_pipeline(df, **kwargs)
Run a variety of probe and sample filters in tandem, then plot results

by specifying all of your options at once, instead of running every part of methylcheck in piacemeal fashion.

this is analogous to using the methylcheck CLI, but for notebooks/scripts

required:

df: (required)

• data as a DataFrame of beta values (or DataFrame of m_values)

• sample names in columns and probes in rows

parameters:

verbose: (True/False) default: False – shows extra info about processing if True

silent: (True/False) default: False – suppresses all warnings/info

exclude_sex: filters out probes on sex-chromosomes

exclude_control: filters out illumina control probes

exclude_all: filters out the most probes (sex-linked, control, and all sketchy-listed probes from papers)

exclude: (list of strings, shorthand references to papers with sketchy probes to exclude)

If the array is 450K the publications may include: 'Chen2013' 'Price2013'
'Zhou2016' 'Naeem2014' 'DacaRoszak2015'

If the array is EPIC the publications may include: 'Zhou2016' 'McCartney2016'

or these reasons: 'Polymorphism' 'CrossHybridization'
'BaseColorChange' 'RepeatSequenceElements'

or use 'exclude_all': to do maximum filtering, including all of these papers’ lists.

plot: (list of strings) [‘mean_beta_plot’, ‘beta_density_plot’, ‘cumulative_sum_beta_distribution’,
‘beta_mds_plot’, ‘all’] if ‘all’, then all of these plots will be generated. if omitted, no plots are
created.

save_plots: (True|False) default: False

export (True|False): default: False – will export the filtered df as a pkl file if True

note: this pipeline cannot also apply the array-level methylcheck.run_qc() function because that relies on addi-
tional probe information that may not be present. Everything in this pipeline applies to a dataframe of beta
or m-values for a set of samples.

returns: a filtered dataframe object

4.6.3 methylcheck.run_qc

methylcheck.run_qc(path)
Generates all QC plots for a dataset in the path provided. if process –all was used to create control probes and
raw values for QC, because it uses four output files:

• beta_values.pkl

• control_probes.pkl

74 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

• meth_values.pkl or noob_meth_values.pkl

• unmeth_values.pkl or noob_unmeth_values.pkl

output is all to screen, so best to use in a jupyter notebook. If you prefer output in a PDF, use ReportPDF instead.

Note: this will only look in the path folder; it doesn’t do a recursive search for matching files.

4.6.4 methylcheck.read_geo

methylcheck.read_geo(filepath, verbose=False, debug=False, as_beta=True, column_pattern=None,
test_only=False, rename_probe_column=True, decimals=3)

Use to load preprocessed GEO data into methylcheck. Attempts to find the sample beta/M_values in the
CSV/TXT/XLSX file and turn it into a clean dataframe, with probe ids in the index/rows. Version 3
(introduced June 2020)

• reads a downloaded file, either in csv, xlsx, pickle, txt

• looks for /d_RxxCxx patterned headings and an probe index

• sets index in df to probes

• sets columns to sample names

• forces probe values to be floats, if strings/mixed

• if filename has ‘intensit’ or ‘signal’ in it, this converts to betas and saves even if filename doesn’t
match, if columns have Methylated in them, it will convert and save

• detect multi-line headers and adjusts dataframe columns accordingly

• returns the usable dataframe

as_beta == True – converts meth/unmeth into a df of sample betas. column_pattern=None (Sample21 |
Sample_21 | Sample 21) – some string of characters that precedes the number part of each sample in the
columns of the file to be ingested.

FIXED: [x] handle files with .Signal_A and .Signal_B instead of Meth/Unmeth [x] BUG: can’t parse ma-
trix_. . . files if uses underscores instead of spaces around sample numbers, or where sampleXXX has no
separator. [x] handle processed files with sample_XX [x] returns IlmnID as index/probe column, unless
‘rename_probe_column’ == False [x] pass in sample_column names from header parser so that logic is in
one place

(makes the output much larger, so add kwarg to exclude this)

[x] demicals (default 3) – round all probe beta/intensity/p values returned to this number of decimal places.
[x] bug: can only recognize beta samples if ‘sample’ in column name, or sentrix_id pattern matches
columns.

need to expand this to handle arbitrary sample naming styles (limited to one column per sample
patterns)

TODO: [-] BUG: meth_unmeth_pval works as_beta but not returning full data yet [-] multiline header not
working with all files yet. [-] _family GSM123456-tbl-1.txt files not detected yet

notes: this makes inferences based on strings in the filename, and based on the column names.

4.6. API Reference 75

methylcheck Documentation, Release 0.8.4

4.6.5 methylcheck.load

methylcheck.load(filepath=’.’, format=’beta_value’, file_stem=”, verbose=False, silent=False, col-
umn_names=None, no_poobah=False, pval_cutoff=0.05, no_filter=True)

Methylsuite’s all-purpose data loading function.

When methylprep processes large datasets, you use the ‘batch_size’ option to keep memory and file size more
manageable. Use the load helper function to quickly load and combine all of those parts into a single data frame
of beta-values or m-values.

Doing this with pandas is about 8 times slower than using numpy in the intermediate step.

If no arguments are supplied, it will load all files in current directory that have a ‘beta_values_X.pkl’ pattern.

Arguments:

filepath: Where to look for all the pickle files of processed data.

format: (‘beta_value’, ‘m_value’, ‘meth’, ‘meth_df’, ‘noob_df’, ‘beta_csv’, ‘sesame’) This also al-
lows processed.csv file data to be loaded. If you need meth and unmeth values, choose ‘meth’
and it will return a data_containers object with the ‘meth’ and ‘unmeth’ values, exactly like the
data_containers object returned by methylprep.run_pipeline.

If you choose ‘meth_df’ or ‘noob_df’ it will load the pickled meth and unmeth dataframes from the
folder specified.

column_names: if your csv files contain column names that differ from those expected, you can specify
them as a list of strings by default it looks for [‘noob_meth’, ‘noob_unmeth’] or [‘meth’, ‘unmeth’]
or [‘beta_value’] or [‘m_value’] Note: if you csv data has probe names in a column that is not the
FIRST column, or is not named “IlmnID”, you should specify it with column_names and put it first
in the list, like [‘illumina_id’, ‘noob_meth’, ‘noob_umeth’].

no_poobah: if loading from CSVs, and there is a column for probe p-values (the poobah_pval column),
the default is to filter out probes that fail the p < 0.05 cutoff. if you specify ‘no_poobah’=True, it will
load everything, regardless of p-values.

pval_cutoff: if applying poobah (pvalue probe detection based on poor signal to noise) this specifies the
threashold for cutoff (0.05 by default)

no_filter: (default = True) if False, removes probes that illumina, the manufacturer, claimed are sketchy
in 2019 for a select list of newer EPIC Sentrix_IDs. only affects ‘beta_value’ and ‘m_value’ output;
no effect on meth/unmeth raw/NOOB intensity values returned.

file_stem: (string) Older versions (pre v1.3.0) of methylprep processed with batch_size created a bunch
of generically named files, such as ‘beta_values_1.pkl’, ‘beta_values_2.pkl’, ‘beta_values_3.pkl’, and
so on. IF you rename these or provide a custom name during processing, provide that name here to
load them all. (i.e. if your pickle file is called ‘GSE150999_beta_values_X.pkl’, then your file_stem
is ‘GSE150999_’)

verbose: outputs more processing messages.

silent: suppresses all processing messages, even warnings.

Use cases and format:

format = beta_value: you have beta_values.pkl file in the path specified and want a dataframe returned
or you have a bunch of beta_values_1.pkl files in the path and want them merged and returned as
one dataframe (when using ‘batch_size’ option in methylprep.run_pipeline() you’ll get multiple files
saved)

format = m_value: you have m_values.pkl file in the path specified and want a dataframe returned or you
have a bunch of m_values_1.pkl files in the path and want them merged and returned as one dataframe

76 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

format = meth: (data_containers) you have processed CSV files in the path specified and want a
data_container returned

format = meth_df: (dataframe) you have processed CSV files in the path specified and want a dataframe
returned take the data_containers object returned and run methylcheck.container_to_pkl(containers,
save=True) function on it.

format = noob_df: (dataframe) loads noob_meth_values.pkl and noob_unmeth_values.pkl and returns
two dataframes in a list

format = sesame: for reading csvs processed using R’s sesame package. It has a different format
(Probe_ID, ind_beta, ind_negs, ind_poob) per sample. Only those probes that pass the p-value cutoff
will be included.

format = beta_csv: for reading processed.csv files from methylprep, and forcing it NOT to load from the
pickled beta dataframe file, if present.

format = poobah_csv: similar to beta_csv, this pulls poobah p-values for all probes out of all processed
CSV files into one dataframe. These p-values will include failed probes and probes that would be
filterd by quality_mask. ‘poobah’ excludes these.

format = poobah: reads the ‘poobah_values.pkl’ file and returns a dataframe of p-values. Note failed /
poor-quality probes are replaced with NaN.

Note:

Science on p-value cutoff: This function defaults to a p-value cutoff of 0.05, which is typical for scientific
tests. There is currently no consensus on what percent of a sample’s probes can fail. For example, if
a sample has 860,000 probes and 5% of them fail, should you reject the whole sample from the batch?
For large batch industrial scale testing, the authors assign some limit, like 5%, 10%, 20%, 30%, etc as a
cutoff. And methylcheck’s run_qc() function defaults to 10 percent. But the academics we spoke to don’t
automatically throw out any samples. Because it depends. Cancer samples have lots of anueploidy (an
abnormal number of chromosomes in a haploid set) and lost chromosomes, so one would expect no signal
for these CpG sites. So those researchers wouldn’t throw out samples unless most of the sample fails.
People are working on deriving a calibration curve from public GEO data as a guide, and give a frame of
reference, but none exist yet. And public data rarely includes failed samples.

Note:

• modified this from methylprep on 2020-02-20 to allow for data_containers to be returned as option

• v0.6.3: added ‘no_filter’ step that automatically removes probes that illumina, the manufacturer, claims
are sketchy for certain Catalog IDs. (Disable this with no_filter=True)

4.6.6 methylcheck.load_both

methylcheck.load_both(filepath=’.’, format=’beta_value’, file_stem=”, verbose=False,
silent=False, column_names=None, rename_samples=False, sam-
ple_names=’Sample_Name’)

Creates and returns TWO objects (data and meta_data) from the given filepath. Confirms sample names match.

Returns TWO objects (data, meta) as dataframes for analysis. If meta_data files are found in multiple
folders, it will read them all and try to match to the samples in the beta_values pickles by sample ID.

Arguments:

4.6. API Reference 77

methylcheck Documentation, Release 0.8.4

filepath: Where to look for all the pickle files of processed data.

format: ‘beta_values’, ‘m_value’, or some other custom file pattern.

file_stem (string): By default, methylprep process with batch_size creates a bunch of generically named
files, such as ‘beta_values_1.pkl’, ‘beta_values_2.pkl’, ‘beta_values_3.pkl’, and so on. IF you rename
these or provide a custom name during processing, provide that name here. (i.e. if your pickle file is
called ‘GSE150999_beta_values_X.pkl’, then your file_stem is ‘GSE150999_’)

column_names: if your processed csv files contain column names that differ from those expected, you
can specify them as a list of strings by default it looks for [‘noob_meth’, ‘noob_unmeth’] or [‘meth’,
‘unmeth’] or [‘beta_value’] or [‘m_value’] Note: if you csv data has probe names in a column that is
not the FIRST column, or is not named “IlmnID”, you should specify it with column_names and put
it first in the list, like [‘illumina_id’, ‘noob_meth’, ‘noob_umeth’].

rename_samples: if your meta_data contains a ‘Sample_Name’ column, the returned data and meta_data
will have index and columns renamed to Sample_Names instead of Sample_IDs, respectively.

sample_name (string): the column name to use in meta dataframe for sample names. Assumes ‘Sam-
ple_Name’ if unspecified.

verbose: outputs more processing messages.

silent: suppresses all processing messages, even warnings.

4.6.7 methylcheck.qc_signal_intensity

methylcheck.qc_signal_intensity(data_containers=None, path=None, meth=None, un-
meth=None, poobah=None, palette=None, noob=True,
silent=False, verbose=False, plot=True, cutoff_line=True,
bad_sample_cutoff=11.5, return_fig=False)

Suggests sample outliers based on methylated and unmethylated signal intensity.

path to csv files processed using methylprep these have “noob_meth” and “noob_unmeth” columns
per sample file this function can use. if you want it to processed data uncorrected data.

data_containers output from the methylprep.run_pipeline() command when run in a script or note-
book. you can also recreate the list of datacontainers using methylcheck.load(<filepath>,’meth’)

(meth and unmeth) if you chose process –all you can load the raw intensities like
this, and pass them in: meth = pd.read_pickle(‘meth_values.pkl’) unmeth =
pd.read_pickle(‘unmeth_values.pkl’) THIS will run the fastest.

(meth and unmeth and poobah) if poobah=None (default): Does nothing if poobah=False: sup-
presses this color if poobah=dataframe: color-codes samples according to percent probe failure
range,

but only if you pass in meth and unmeth dataframes too, not data_containers object.

if poobah=True: looks for poobah_values.pkl in the path provided.

cutoff_line: True will draw the line; False omits it. bad_sample_cutoff (default 11.5): set the cutoff
for determining good vs bad samples, based on signal intensities of meth and unmeth fluorescence
channels. 10.5 was borrowed from minfi’s internal defaults. noob: use noob-corrected meth/unmeth
values verbose: additional messages plot: if True (default), shows a plot. if False, this function returns
the median values per sample of meth and unmeth probes. return_fig (False default), if True, and plot
is True, returns a figure object instead of showing plot. compare: if the processed data contains both
noob and uncorrected values, it will plot both in different colors palette: if using poobah to color
code, you can specify a Seaborn palette to use.

78 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

this will draw a diagonal line on plots

A dictionary of data about good/bad samples based on signal intensity

TODO: doesn’t return both types of data if using compare and not plotting doesn’t give good error message for
compare

4.6.8 methylcheck.plot_M_vs_U

methylcheck.plot_M_vs_U(data_containers_or_path=None, meth=None, unmeth=None,
poobah=None, noob=True, silent=False, verbose=False, plot=True,
compare=False, return_fig=False, palette=None, cutoff_line=True)

plot methylated vs unmethylated probe intensities

PATH to csv files processed using methylprep these have “noob_meth” and “noob_unmeth”
columns per sample file this function can use. if you want it to processed data uncorrected
data. (If there is a poobah_values.pkl file in this PATH, it will use the file to color code points)

data_containers = run_pipeline(data_dir = ‘somepath’,

save_uncorrected=True, sample_sheet_filepath=’samplesheet.csv’)

you can also recreate the list of datacontainers using methylcheck.load(<filepath>,’meth’)

(meth and unmeth) if you chose process –all you can load the raw intensities like
this, and pass them in: meth = pd.read_pickle(‘meth_values.pkl’) unmeth =
pd.read_pickle(‘unmeth_values.pkl’) THIS will run the fastest.

poobah filepath: You may supply the file path to the p-value detection dataframe. If supplied, it
will color code points on the plot. False: set poobah to False to suppress this coloring. None
(default): if there is a poobah_values.pkl file in your path, it will use it.

optional params: noob: use noob-corrected meth/unmeth values verbose: additional messages plot: if True
(default), shows a plot. if False, this function returns the median values per sample of meth and unmeth
probes. return_fig: (False default), if True (and plot is true), returns the figure object instead of showing it.
compare:

if the processed data contains both noob and uncorrected values, it will plot both in different
colors the compare option will not work with using the ‘meth’ and ‘unmeth’ inputs, only with
path or data_containers.

cutoff_line: True will draw a diagonal line on plots. the cutoff line is based on the X-Y scale of the
plot, which depends on the range of intensity values in your data set.

TODO: doesn’t return both types of data if using compare and not plotting doesn’t give good error message for
compare

4.6.9 methylcheck.plot_controls

methylcheck.plot_controls(path=None, subset=’all’, return_fig=False)
internal array QC controls (available with the –save_control or –all methylprep process option)

path can either be a path to the file, or a path to the folder containing a file called ‘con-
trol_probes.pkl’, or it can be the dictionary of control dataframes in control_probes.pkl.

4.6. API Reference 79

methylcheck Documentation, Release 0.8.4

subset (‘staining’ | ‘negative’ | ‘hybridization’ | ‘extension’ | ‘bisulfite’ | ‘non-polymorphic’ |
‘target-removal’ | ‘specificity’ | ‘all’):

‘all’ will plot every control function (default)

return_fig (False) if True, returns a list of matplotlib.pyplot figure objects INSTEAD of showing
then. Used in QC ReportPDF.

if there are more than 30 samples, plots will not have sample names on x-axis.

4.6.10 methylcheck.plot_beta_by_type

methylcheck.plot_beta_by_type(beta_df, probe_type=’all’, return_fig=False, silent=False,
on_lambda=False)

compare betas for type I and II probes – (inspired by the plotBetasByType() function)

Plot the overall density distribution of beta values and the density distributions of the Infinium I or II probe types
1 distribution plot; user defines type (I or II infinium)

Doesn’t work with 27k arrays because they are all of the same type, Infinium Type I.

options: return_fig: (default False) if True, returns a list of figure objects instead of showing plots.

4.6.11 methylcheck.probes

4.6.12 methylcheck.list_problem_probes

methylcheck.list_problem_probes(array, criteria=None, custom_list=None)
Function to create a list of probes to exclude from downstream processes.

By default, all probes that have been noted in the literature to have polymorphisms, cross-hybridization, repeat
sequence elements and base color changes are included in the DEFAULT exclusion list.

• You can customize the exclusion list by passing in either publication shortnames or criteria into the func-
tion.

• you can combine pubs and reasons into the same list of exclusion criteria.

• if a publication doesn’t match your array type, it will raise an error and tell you.

Including any of these labels in pubs (publications) or criteria (described below) will result in these probes NOT
being included in the final exclusion list.

User also has ability to add custom list of probes to include in final returned list.

Parameters:

array: string name for type of array used ‘IlluminaHumanMethylationEPIC’, ‘IlluminaHuman-
Methylation450k’ This shorthand names are also okay:

{'EPIC','EPIC+','450k','27k','MOUSE'}

criteria: list List of the publications to use when excluding probes. If the array is 450K the
publications may include: 'Chen2013' 'Price2013' 'Zhou2016' 'Naeem2014'
'DacaRoszak2015'

If the array is EPIC the publications may include: 'Zhou2016' 'McCartney2016'

If array is EPIC or EPIC+, specifying 'illumina' will remove 998 probes the manufacturer
has recommended be excluded. The defects only affected a small number of EPIC arrays pro-
duced.

80 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

If no publication list is specified, probes from all publications will be added to the exclusion list.
If more than one publication is specified, all probes from all publications in the list will be added
to the exclusion list.

criteria: lists List of the criteria to use when excluding probes. List may contain the following
exculsion criteria: ‘‘’Polymorphism’

‘CrossHybridization’ ‘BaseColorChange’ ‘RepeatSequenceElements’ ‘illumina’‘‘

If no criteria list is specified, all critera will be excluded. If more than one criteria is specified,
all probes meeting any of the listed criteria will be added to the exclusion list.

custom_list: list, default None User-provided list of probes to be excluded. These probe names
have to match the probe names in your data exactly.

Returns:

probe_exclusion_list: list List containing probe identifiers to be excluded

or probe_exclusion_dataframe: dataframe DataFrame containing probe names as index and rea-
son | paper_reference as columns

If you supply no criteria (default), then maximum filtering occurs:

• EPIC will have 389050 probes removed

• 450k arrays will have 341057 probes removed

Reason lists for 450k and probes removed:

• Daca-Roszak_etal_2015 (96427)

• Chen_etal_2013 (445389)

• Naeem_etal_2014 (146590)

• Price_etal_2013 (284476)

• Zhou_etal_2016 (184302)

• Polymorphism (796290)

• CrossHybridization (211330)

• BaseColorChange (359)

• RepeatSequenceElements (149205)

Reason lists for epic and probes removed:

• McCartney_etal_2016 (384537)

• Zhou_etal_2016 (293870)

• CrossHybridization (173793)

• Polymorphism (504208)

• BaseColorChange (406)

4.6.13 methylcheck.exclude_probes

methylcheck.exclude_probes(df, probe_list)
Exclude probes from a dataframe of sample beta values. Use list_problem_probes() to obtain a list of probes (or
pass in the names of ‘Criteria’ from problem probes), then pass that in as a probe_list along with the dataframe
of beta values (array)

4.6. API Reference 81

methylcheck Documentation, Release 0.8.4

Resolves a problem whereby probe lists have basic names, but samples have additional meta data added. Exam-
ple:

probe list [‘cg24168924’, ‘cg15886294’, ‘cg05943251’, ‘cg05579622’, ‘cg01797553’, ‘cg14885690’,
‘cg12490816’, ‘cg02631583’, ‘cg17361593’, ‘cg15000031’, ‘cg21515494’, ‘cg17219246’, ‘cg10838001’,
‘cg13913475’, ‘cg00492169’, ‘cg20352786’, ‘cg05932698’, ‘cg06736139’, ‘cg08333283’, ‘cg10010298’,
‘cg25984048’, ‘cg27287823’, ‘cg19269713’, ‘cg12456833’, ‘cg26161708’, ‘cg04984052’, ‘cg00033806’,
‘cg23255774’, ‘cg10717379’, ‘cg00880984’, ‘cg01818617’, ‘cg18563133’, ‘cg15895341’, ‘cg08155050’,
‘cg06820286’, ‘cg04325909’, ‘cg15094920’, ‘cg08037129’, ‘cg11161730’, ‘cg06044537’, ‘cg11936560’,
‘cg12404870’, ‘cg12670496’, ‘cg01473643’, ‘cg08605930’, ‘cg16553354’, ‘cg22175254’, ‘cg22966295’,
‘cg07346931’, ‘cg06234741’]

sample probe names

Index([‘cg00000029_II_F_C_rep1_EPIC’, ‘cg00000103_II_F_C_rep1_EPIC’,
‘cg00000109_II_F_C_rep1_EPIC’, ‘cg00000155_II_F_C_rep1_EPIC’,

‘cg00000158_II_F_C_rep1_EPIC’, ‘cg00000165_II_R_C_rep1_EPIC’,
‘cg00000221_II_R_C_rep1_EPIC’, ‘cg00000236_II_R_C_rep1_EPIC’, . . .
‘ch.9.98957343R_II_R_O_rep1_EPIC’, ‘ch.9.98959675F_II_F_O_rep1_EPIC’,
‘ch.9.98989607R_II_R_O_rep1_EPIC’, ‘ch.9.991104F_II_F_O_rep1_EPIC’]

This chops off anything after the first underscore, and compares with probe_list to see if percent match increases.
It then drops probes from array that match probe_list, at least partially.

ADDED: checking whether array.index is string or int type. Regardless, this should work and not alter the
original index. ADDED v0.6.4: pass in a string like ‘illumina’ or ‘McCartney2016’ and it will fetch the list for
you.

ref: https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html#
howwhy-probes-are-masked SESAME probe exclusion lists were pulled using these R commands:

EPIC_Zhou = sesameDataGet(‘EPIC.probeInfo’)$mask # 104454 probes HM450_Zhou <- sesame-
DataGet(‘HM450.probeInfo’))$mask # 65144 probes

4.6.14 methylcheck.exclude_sex_control_probes

methylcheck.exclude_sex_control_probes(df, array, no_sex=True, no_control=True, ver-
bose=False)

Exclude probes from an array, and return a filtered array.

df: dataframe of beta values or m-values. array: type of array used.

{‘27k’, ‘450k’, ‘EPIC’, ‘EPICPLUS’, ‘MOUSE’} or {‘IlluminaHumanMethyla-
tion27k’,’IlluminaHumanMethylation450k’,’IlluminaHumanMethylationEPIC’, ‘mouse’} or
{‘27k’, ‘450k’, ‘epic’, ‘epic+’, ‘mouse’}

no_sex: bool (default True) if True, will remove all probes that target X and Y chromosome locations, as they
are sex specific – and lead to multiple clusters when trying to detect and remove outliers (noisy data).

no_control: bool (default True) if True, removes Illumina’s internal control probes.

verbose: bool (default False) reports out on number of probes removed.

a dataframe with samples removed.

82 Chapter 4. Tutorials and Guides

https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html#howwhy-probes-are-masked
https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html#howwhy-probes-are-masked

methylcheck Documentation, Release 0.8.4

4.6.15 methylcheck.drop_nan_probes

methylcheck.drop_nan_probes(df, silent=False, verbose=False)
accounts for df shape (probes in rows or cols) so dropna() will work.

the method used inside MDS may be faster, but doesn’t tell you which probes were dropped.

4.6.16 methylcheck.samples

4.6.17 methylcheck.sample_plot

methylcheck.sample_plot(df, **kwargs)
A more intuitive alias of beta_density_plot(), since not all values are beta distributions. Note: This
changes the ‘‘beta_density_plot()‘ defaults to show a reduced, faster version of probe data, sampling 10% of
probes present for10-fold faster processing time.

4.6.18 methylcheck.beta_density_plot

methylcheck.beta_density_plot(df, verbose=False, save=False, silent=False, re-
duce=0.1, plot_title=None, ymax=None, return_fig=False,
full_range=False, highlight_samples=None, figsize=(12, 9),
show_labels=None, filename=’beta.png’)

Returns a plot of beta values for each sample in a batch of samples as a separate line. Y-axis values is an arbitrary
scale, similar to a histogram of probes that have a given beta value. X-axis values are beta values (0 to 1) for a
single samples

Input (df):

• a dataframe with probes in rows and sample_ids in columns.

• to get this formatted import, use methylprep.consolidate_values_for_sheet(), as this
will return a matrix of beta-values for a batch of samples (by default).

Returns: None (but if return_fig is True, returns the figure object instead of showing plot)

Parameters:

verbose: display extra messages

save: if True, saves a copy of the plot as a png file.

silent: if True, eliminates all messages (useful for automation and scripting)

reduce: when working with datasets and you don’t need publication quality “exact” plots, supply a float
between 0 and 1 to sample the probe data for plotting. We recommend 0.1, which plots 10% of the
450k or 860k probes, and doesn’t distort the distribution much. Values below 0.001 (860 probes out of
860k) will show some sampling distortion. Using 0.1 will speed up plotting 10-fold of large batches.

ymax (None): If defined, upper limit of plot will not exceed this value. But it y-range can be smaller if
values are less than this range.

full_range: (False) if True, x-axis will be auto-scaled, instead of fixed in the 0-to-1.0 range.

return_fig: (False) if True, returns figure object instead of showing plot.

highlight_samples: a string or list of df col-names that, if provided, will highlight sample(s) in blue and
bold in plot returned. all other samples in df will be grayed out. Useful for QC reports.

figsize: tuple of width, height, with 12,9 being default if ommitted.

4.6. API Reference 83

methylcheck Documentation, Release 0.8.4

show_labels: By default, sample names appear in a legend if there are <30 samples. Otherwise, ommitted.
Use this to force legend on or off.

Note: if the sample_ids in df.index are not unique, it will make them so for the purpose of plotting.

4.6.19 methylcheck.mean_beta_plot

methylcheck.mean_beta_plot(df, verbose=False, save=False, silent=False)
Returns a plot of the average beta values for all probes in a batch of samples.

Input (df):

• a dataframe with probes in rows and sample_ids in columns.

• to get this formatted import, use methylprep.consolidate_values_for_sheet(),

as this will return a matrix of beta-values for a batch of samples (by default).

4.6.20 methylcheck.mean_beta_compare

methylcheck.mean_beta_compare(df1, df2, save=False, verbose=False, silent=False)
Use this function to compare two dataframes, pre-vs-post filtering and removal of outliers. args:

the first argument (df1) is the “pre” dataframe of samples the second argument (df2) is the “post”
dataframe of samples

kwargs: verbose: additional output silent: suppresses figure, so no output unless save==True too.

4.6.21 methylcheck.beta_mds_plot

methylcheck.beta_mds_plot(df, filter_stdev=1.5, verbose=False, save=False, silent=False,
multi_params={’draw_box’: True}, plot_removed=False,
nafill=’quick’, poobah=None, palette=None, labels=None, ex-
tend_poobah_range=True, plot=True)

Performs multidimensional scaling on a dataframe of samples

Arguments

df: dataframe of beta values for a batch of samples (rows are probes; cols are samples)

filter_stdev: a value (unit: standard deviations) between 0 and 3 (typically) that represents
the fraction of samples to include, based on the standard deviation of this batch of samples. So
using the default value of 1.5 means that all samples whose MDS-transformed beta sort_values
are within +/- 1.5 standard deviations of the average beta are retained in the data returned.

plot_removed: if True, displays a plot of samples’ beta-distributions that were removed by MDS
filtering. ignored if silent=True.

nafill: (‘quick’ | ‘impute’) by default, most samples will contain missing values where probes
failed the signal-noise detection in methylprep. By default, it will use the fastest method of
filling in samples from adjacent sample’s probe values with the ‘quick’ method. Or, if you want
it to use the average value for all samples for each probe, use ‘impute’, which will be much
slower.

poobah: path to poobah_values.pkl file. Default is None. If supplied, this will color code dots
according to percent of failed probes for each sample as a second dimension of QC on the plot.
Does not filter or affect the output dataframe returned.

84 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

palette: Optional - Specify a matplotlib/seaborn palette name, such as ‘CMRmap_r’, ‘cool-
warm’, or ‘nipy_spectral’. Default is ‘twilight’.

labels: pass in a dictionary with sample names found in df columns and a (number or string)
representing the groups to assign samples to. Use this to color-code the samples against a known
classification scheme, such as cell type, and observe whether the MDS clustering pattern aligns
with this input parameter. This feature is not compatible with poobah or multi_params.

extend_poobah_range: True means 7 colors appear covering 0-30%. False means 5 colors and
0-20%. Default is True.

multi_params: is a dict, passed into this function from a multi-compare-MDS wrapper func-
tion, containing: {return_plot_obj=True, fig=None, ax=None, draw_box=False, xy_lim=None,
color_num=0, PSF=1.2 – plot scale factor (margin beyond points to display)}

Options

verbose: If True, provides additional messages

silent:

• if running from command line in an automated process, you can run in silent mode to sup-
press any user interaction.

• In this case, whatever filter_stdev you assign is the final value, and a file will be processed
with that param.

plot: (default True)

• plot is False, this suppresses plots (images) from being generated and shown on screen.

• .png files are still saved if save == True.

Returns

Returns a filtered dataframe. If return_plot_obj is True, it returns the plot, for making overlays
in methylize.

Requires

pandas, numpy, pyplot, sklearn.manifold.MDS

Notes

this will remove probes from ALL samples in batch from consideration if any samples contain NaN
(missing values) for that probe.

4.6.22 methylcheck.combine_mds

methylcheck.combine_mds(*args, **kwargs)
To combine (or segment) datasets for multidimensional scaling analysis

Use this function on multiple dataframes to combine datasets, or to visualize parts of the same dataset in separate
colors. It is a wrapper of methylcheck.beta_mds_plot() and applies multidimensional scaling to cluster similar
samples based on patterns in probe values, as well as identify possible outlier samples (and exclude them).

• combine datasets,

• run MDS,

• see how each dataset (or subset) overlaps with the others on a plot,

• exclude outlier samples based on a composite cutoff box (the average bounds of the component data sets)

• calculate the percent of data excluded from the group

4.6. API Reference 85

methylcheck Documentation, Release 0.8.4

• *args:

– pass in any number of pandas dataframes, and it will combine them into one mds plot.

– alternatively, you may pass in a list of filepaths as strings, and it will attempt to load these files as
pickles.

but they must be pickles of pandas dataframes containing beta values or m-values

• silent: (default False) (automated processing mode) if True, suppresses most information and avoids
prompting user for anything. silent mode processes data but doesn’t show the plot.

• save: (default False) if True, saves the plot png to disk.

• verbose: (default False) if True, prints extra debug information to screen or logger.

• filter_stdev: how broadly should you retain samples? units are standard deviations, defaults to 1.5
STDEV. if you increase this number, fewer outlier samples will be removed.

• returns a dataframe of transformed samples

4.6.23 methylcheck.cumulative_sum_beta_distribution

methylcheck.cumulative_sum_beta_distribution(df, cutoff=0.7, verbose=False, save=False,
silent=False)

Attempts to filter outlier samples based on the cumulative area under the curve exceeding a reasonable value
(cutoff). This method only works on poor quality samples that are better identified using ControlReporter
summary (CLI: ‘methylcheck controls’)

Inputs: DataFrame – wide format (probes in columns, samples in rows) cutoff (default 0.7) silent – suppresses
figure, so justs returns transformed data if False. if save==True: saves figure to disk.

Returns: dataframe with subjects removed that exceed cutoff value.

4.6.24 methylcheck.predict

4.6.25 methylcheck.get_sex

methylcheck.get_sex(data_source, array_type=None, verbose=False, plot=False, save=False,
on_lambda=False, median_cutoff=-2, include_probe_failure_percent=True,
poobah_cutoff=20, custom_label=None, return_fig=False, return_labels=False)

This will calculate and predict the sex of each sample.

the “data_source” can be any one of: path – to a folder with csv data that contains processed sam-
ple data path – to a folder with the ‘meth_values.pkl’ and ‘unmeth_values.pkl’ dataframes path
– to a folder also containing samplesheet pkl and poobah_values.pkl, if you want to compare
predicted sex with actual sex. data_containers – object created from methylprep.run_pipeline()
or methylcheck.load(path, ‘meth’) tuple of (meth, unmeth) dataframes

array_type (string) enum: {‘27k’,’450k’,’epic’,’epic+’,’mouse’} if not specified, it will load the
data from data_source and determine the array for you.

median_cutoff (default is -2) the minimum difference in the medians of X and Y probe copy num-
bers to assign male or female (copied from the minfi sex predict function)

include_probe_failure_percent: True: includes poobah percent per sample as column in the output
table and on the plot. Note: you must supply a ‘path’ as data_source to include poobah in plots.

86 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

poobah_cutoff The maximum percent of sample probes that can fail before the sample fails. Default
is 20 (percent) Has no effect if include_probe_failure_percent is False.

plot True: creates a plot, with option to save as image or return_fig.

save True: saves the plot, if plot is True

return_fig If True, returns a pyplot figure instead of a dataframe. Default is False. Note: return_fig
will not show a plot on screen.

return_labels: (requires plot == True) When using poobah_cutoff, the figure only includes A-
Z,1. . . N labels on samples on plot to make it easier to read. So to get what sample_ids these
labels correspond to, you can rerun the function with return_labels=True and it will skip plotting
and just return a dictionary with sample_ids and these labels, to embed in a PDF report if you
like.

custom_label: Option to provide a dictionary with keys as sample_ids and values as labels to apply
to samples. e.g. add more data about samples to the multi-dimensional QC plot

while providing a filepath is the easiest way, you can also pass in a data_containers object, a list
of data_containers containing raw meth/unmeth values, instead. This object is produced by methyl-
prep.run_pipeline, or by using methylcheck.load(filepath, format=’meth’) and lets you customize the import
if your files were not prepared using methylprep (non-standand CSV columns, for example)

If a poobah_values.pkl file can be found in path, the dataframe returned will also include percent of probes for
X and Y chromosomes that failed quality control, and warn the user if any did. This feature won’t work if a
containers object or tuple of dataframes is passed in, instead of a path.

Note: ~90% of Y probes should fail if the sample is female. That chromosome is missing.

4.6.26 methylcheck.assign

methylcheck.assign(df, two_pass=False)

Manually and interactively assign each sample to a group, based on beta-value distribution shape. This
function is not documented or supported anymore.

how: sorts samples by the position of their peak intensity in beta dist, then lets the human assign a number to
each. assumes that peaks that differ by > 0.1 of the 0 to 1 range are different clusters. fills in expected
cluster #.

options: if two_pass==True: it lets user go through every cluster a second time and split larger clusters further.
sometimes a cluster isn’t obviously two groups until it is separated from the larger dataset.

4.6.27 Loading Data

methylcheck.load_processed.load(filepath=’.’, format=’beta_value’, file_stem=”, verbose=False,
silent=False, column_names=None, no_poobah=False,
pval_cutoff=0.05, no_filter=True)

Methylsuite’s all-purpose data loading function.

When methylprep processes large datasets, you use the ‘batch_size’ option to keep memory and file size more
manageable. Use the load helper function to quickly load and combine all of those parts into a single data frame
of beta-values or m-values.

Doing this with pandas is about 8 times slower than using numpy in the intermediate step.

If no arguments are supplied, it will load all files in current directory that have a ‘beta_values_X.pkl’ pattern.

Arguments:

4.6. API Reference 87

methylcheck Documentation, Release 0.8.4

filepath: Where to look for all the pickle files of processed data.

format: (‘beta_value’, ‘m_value’, ‘meth’, ‘meth_df’, ‘noob_df’, ‘beta_csv’, ‘sesame’) This also al-
lows processed.csv file data to be loaded. If you need meth and unmeth values, choose ‘meth’
and it will return a data_containers object with the ‘meth’ and ‘unmeth’ values, exactly like the
data_containers object returned by methylprep.run_pipeline.

If you choose ‘meth_df’ or ‘noob_df’ it will load the pickled meth and unmeth dataframes from the
folder specified.

column_names: if your csv files contain column names that differ from those expected, you can specify
them as a list of strings by default it looks for [‘noob_meth’, ‘noob_unmeth’] or [‘meth’, ‘unmeth’]
or [‘beta_value’] or [‘m_value’] Note: if you csv data has probe names in a column that is not the
FIRST column, or is not named “IlmnID”, you should specify it with column_names and put it first
in the list, like [‘illumina_id’, ‘noob_meth’, ‘noob_umeth’].

no_poobah: if loading from CSVs, and there is a column for probe p-values (the poobah_pval column),
the default is to filter out probes that fail the p < 0.05 cutoff. if you specify ‘no_poobah’=True, it will
load everything, regardless of p-values.

pval_cutoff: if applying poobah (pvalue probe detection based on poor signal to noise) this specifies the
threashold for cutoff (0.05 by default)

no_filter: (default = True) if False, removes probes that illumina, the manufacturer, claimed are sketchy
in 2019 for a select list of newer EPIC Sentrix_IDs. only affects ‘beta_value’ and ‘m_value’ output;
no effect on meth/unmeth raw/NOOB intensity values returned.

file_stem: (string) Older versions (pre v1.3.0) of methylprep processed with batch_size created a bunch
of generically named files, such as ‘beta_values_1.pkl’, ‘beta_values_2.pkl’, ‘beta_values_3.pkl’, and
so on. IF you rename these or provide a custom name during processing, provide that name here to
load them all. (i.e. if your pickle file is called ‘GSE150999_beta_values_X.pkl’, then your file_stem
is ‘GSE150999_’)

verbose: outputs more processing messages.

silent: suppresses all processing messages, even warnings.

Use cases and format:

format = beta_value: you have beta_values.pkl file in the path specified and want a dataframe returned
or you have a bunch of beta_values_1.pkl files in the path and want them merged and returned as
one dataframe (when using ‘batch_size’ option in methylprep.run_pipeline() you’ll get multiple files
saved)

format = m_value: you have m_values.pkl file in the path specified and want a dataframe returned or you
have a bunch of m_values_1.pkl files in the path and want them merged and returned as one dataframe

format = meth: (data_containers) you have processed CSV files in the path specified and want a
data_container returned

format = meth_df: (dataframe) you have processed CSV files in the path specified and want a dataframe
returned take the data_containers object returned and run methylcheck.container_to_pkl(containers,
save=True) function on it.

format = noob_df: (dataframe) loads noob_meth_values.pkl and noob_unmeth_values.pkl and returns
two dataframes in a list

format = sesame: for reading csvs processed using R’s sesame package. It has a different format
(Probe_ID, ind_beta, ind_negs, ind_poob) per sample. Only those probes that pass the p-value cutoff
will be included.

88 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

format = beta_csv: for reading processed.csv files from methylprep, and forcing it NOT to load from the
pickled beta dataframe file, if present.

format = poobah_csv: similar to beta_csv, this pulls poobah p-values for all probes out of all processed
CSV files into one dataframe. These p-values will include failed probes and probes that would be
filterd by quality_mask. ‘poobah’ excludes these.

format = poobah: reads the ‘poobah_values.pkl’ file and returns a dataframe of p-values. Note failed /
poor-quality probes are replaced with NaN.

Note:

Science on p-value cutoff: This function defaults to a p-value cutoff of 0.05, which is typical for scientific
tests. There is currently no consensus on what percent of a sample’s probes can fail. For example, if
a sample has 860,000 probes and 5% of them fail, should you reject the whole sample from the batch?
For large batch industrial scale testing, the authors assign some limit, like 5%, 10%, 20%, 30%, etc as a
cutoff. And methylcheck’s run_qc() function defaults to 10 percent. But the academics we spoke to don’t
automatically throw out any samples. Because it depends. Cancer samples have lots of anueploidy (an
abnormal number of chromosomes in a haploid set) and lost chromosomes, so one would expect no signal
for these CpG sites. So those researchers wouldn’t throw out samples unless most of the sample fails.
People are working on deriving a calibration curve from public GEO data as a guide, and give a frame of
reference, but none exist yet. And public data rarely includes failed samples.

Note:

• modified this from methylprep on 2020-02-20 to allow for data_containers to be returned as option

• v0.6.3: added ‘no_filter’ step that automatically removes probes that illumina, the manufacturer, claims
are sketchy for certain Catalog IDs. (Disable this with no_filter=True)

methylcheck.load_processed.load_both(filepath=’.’, format=’beta_value’, file_stem=”,
verbose=False, silent=False, col-
umn_names=None, rename_samples=False, sam-
ple_names=’Sample_Name’)

Creates and returns TWO objects (data and meta_data) from the given filepath. Confirms sample names match.

Returns TWO objects (data, meta) as dataframes for analysis. If meta_data files are found in multiple
folders, it will read them all and try to match to the samples in the beta_values pickles by sample ID.

Arguments:

filepath: Where to look for all the pickle files of processed data.

format: ‘beta_values’, ‘m_value’, or some other custom file pattern.

file_stem (string): By default, methylprep process with batch_size creates a bunch of generically named
files, such as ‘beta_values_1.pkl’, ‘beta_values_2.pkl’, ‘beta_values_3.pkl’, and so on. IF you rename
these or provide a custom name during processing, provide that name here. (i.e. if your pickle file is
called ‘GSE150999_beta_values_X.pkl’, then your file_stem is ‘GSE150999_’)

column_names: if your processed csv files contain column names that differ from those expected, you
can specify them as a list of strings by default it looks for [‘noob_meth’, ‘noob_unmeth’] or [‘meth’,
‘unmeth’] or [‘beta_value’] or [‘m_value’] Note: if you csv data has probe names in a column that is
not the FIRST column, or is not named “IlmnID”, you should specify it with column_names and put
it first in the list, like [‘illumina_id’, ‘noob_meth’, ‘noob_umeth’].

4.6. API Reference 89

methylcheck Documentation, Release 0.8.4

rename_samples: if your meta_data contains a ‘Sample_Name’ column, the returned data and meta_data
will have index and columns renamed to Sample_Names instead of Sample_IDs, respectively.

sample_name (string): the column name to use in meta dataframe for sample names. Assumes ‘Sam-
ple_Name’ if unspecified.

verbose: outputs more processing messages.

silent: suppresses all processing messages, even warnings.

methylcheck.load_processed.container_to_pkl(containers, output=’betas’, save=True)
simple helper function to convert a list of SampleDataContainer objects to a df and pickle it.

save (True|False) whether to save the data to disk, in the current directory

output (‘betas’|’m_value’|’meth’|’noob’|’copy_number’) reads processed CSVs and consolidates
into a single dataframe, with samples in columns and probes in rows: betas – saves
‘beta_values.pkl’ m_value – saves ‘m_values.pkl’ meth – saves uncorrected ‘meth_values.pkl’
and ‘unmeth_values.pkl’ noob – saves ‘meth_noob_values.pkl’ and ‘unmeth_noob_values.pkl’
copy_number – saves ‘copy_number_values.pkl’

this is for loading a bunch of processed csv files into containers, then into be-
tas ` import methylcheck as m files = '/Volumes/202761400007'
containers = m.load(files, 'meth') df = m.load_processed.
container_to_beta(containers) `

methylcheck.read_geo_processed.read_geo(filepath, verbose=False, debug=False,
as_beta=True, column_pattern=None,
test_only=False, rename_probe_column=True,
decimals=3)

Use to load preprocessed GEO data into methylcheck. Attempts to find the sample beta/M_values in the
CSV/TXT/XLSX file and turn it into a clean dataframe, with probe ids in the index/rows. Version 3
(introduced June 2020)

• reads a downloaded file, either in csv, xlsx, pickle, txt

• looks for /d_RxxCxx patterned headings and an probe index

• sets index in df to probes

• sets columns to sample names

• forces probe values to be floats, if strings/mixed

• if filename has ‘intensit’ or ‘signal’ in it, this converts to betas and saves even if filename doesn’t
match, if columns have Methylated in them, it will convert and save

• detect multi-line headers and adjusts dataframe columns accordingly

• returns the usable dataframe

as_beta == True – converts meth/unmeth into a df of sample betas. column_pattern=None (Sample21 |
Sample_21 | Sample 21) – some string of characters that precedes the number part of each sample in the
columns of the file to be ingested.

FIXED: [x] handle files with .Signal_A and .Signal_B instead of Meth/Unmeth [x] BUG: can’t parse ma-
trix_. . . files if uses underscores instead of spaces around sample numbers, or where sampleXXX has no
separator. [x] handle processed files with sample_XX [x] returns IlmnID as index/probe column, unless
‘rename_probe_column’ == False [x] pass in sample_column names from header parser so that logic is in
one place

(makes the output much larger, so add kwarg to exclude this)

90 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

[x] demicals (default 3) – round all probe beta/intensity/p values returned to this number of decimal places.
[x] bug: can only recognize beta samples if ‘sample’ in column name, or sentrix_id pattern matches
columns.

need to expand this to handle arbitrary sample naming styles (limited to one column per sample
patterns)

TODO: [-] BUG: meth_unmeth_pval works as_beta but not returning full data yet [-] multiline header not
working with all files yet. [-] _family GSM123456-tbl-1.txt files not detected yet

notes: this makes inferences based on strings in the filename, and based on the column names.

methylcheck.read_geo_processed.detect_header_pattern(test, filename, re-
turn_sample_column_names=False)

test is a dataframe with first 100 rows of the data set, and all columns. makes all the assumptions easier to read
in one place.

betas non-normalized matrix_processed matrix_signal series_matrix – read_series_matrix(file, de-
tect_only=True) methylated_signal_intensities and unmethylated_signal_intensities _family

TODO: GSM12345-tbl-1.txt type files (in _family.tar.gz packages) are possible, but needs more work. TODO:
combining two files with meth/unmeth values

• numbered samples handled differently from sample_ids in columns

• won’t detect columns with no separators in strings

4.6.28 ReportPDF Report Builder class

class methylcheck.reports.qc_report.ReportPDF(**kwargs)
ReportPDF allows you to build custom QC reports.

To use:

• First, initialize the report and pass in kwargs, like myReport = ReportPDF(**kwargs)

• Next, run `myReport.run_qc() to fill it in.

• Third, you must run myReport.pdf.close() after run_qc() to save the file to disk.

• You can supply kwargs to specify which QC plots to include - and supply a list of chart names to control
the order of objects in the report. - if you pass in ‘order’ in kwargs, any page you omit in the order will be
omitted from the final report. - You may pass in a custom table to override one of the built-in pages.

• include ‘path’ with the path to your processed pickle files.

• include an optional ‘outpath’ for where to save the pdf report.

kwargs:

• processing params - filename - poobah_min_percent (e.g. at least 80% of probes must pass for sample to
pass) - pval_cutoff (e.g. set alpha at 0.05) - outpath - path - runme: Default is not to actually generate all
the parts of PDF with report.run_qc() then report.pdf.close(), but setting this to True will do everything at
once.

• front page text - title - author - subject - keywords

• if ‘debug=True’ is in kwargs, - then it will return a report without any parts that failed.

• tests - poobah: includes a table with each sample and percent of probes that passed p-value signal de-
tection - gct: includes GCT scores (bisulfite conversion completeness) in poobah table - mds: performs
multidimensional scaling to identify and report on sample outliers

4.6. API Reference 91

methylcheck Documentation, Release 0.8.4

• plots - beta_density_plot - M_vs_U (default False) - M_vs_U_compare (default False) – shows the effect
of all processing steps vs raw intensity - qc_signal_intensity - controls (A battery of probe performance
plots) - probe_types

• customizing plots - poobah_colormap (pass in the matplotlib colormap name to override the meta_mds
default colormap)

This also overrides the default colormap used in M_vs_U plot.

– extend_poobah_range (Default: True will show 7 colors for poobah failure range on beta_mds_plot,
max 30%; False will show only 5, max 20%)

– cutoff_line – False to disable cutoff line on qc_signal_intensity and M_vs_U plots

– appendix_fontsize (default 12 point) – specify an int for other fontsize

custom tables:

pass in arbitrary data using kwarg custom_tables as list of dictionaries with this structure:

`python custom_tables=[{ 'title': "some title, optional", # NOTE: chart
titles must be unique! 'col_names': ["<list of strings>"], 'row_names':
["<list of strings, optional>"], 'data': ["<list of lists, with order
matching col_names>"], 'order_after': "string name of the plot this should
come after. It cannot appear first in list.", 'font_size': <can be None,
int, 'auto' (shrink to page), or 'truncate' (chop of long values to make
fit)> }, {"<...second table here...>"}] `

If ‘order_after’ is None, the custom table will be inserted at the beginning of the report. If there are multiple
custom tables and all have ‘order_after’ set to None, the first table in the list gets inserted, then the next one,
sequentially, so that the last table inserted will be the first table to appear.

Pre-processing pipeline:

Probe-level (w/explanations of suggested exclusions)

• Links to recommended probe exclusion lists/files/papers

• Background subtraction and normalization (‘noob’)

• Detection p-value (‘neg’ vs ‘oob’)

• Dye-bias correction (from SeSAMe)

Sample-level (w/explanations of suggested exclusions) Detection p-value (% failed probes) - custom detec-
tion (% failed, of those in a user-defined-list supplied to function) MDS

Suggested for customer to do on their own

• Sex check

• Age check

• SNP check

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

exec_summary()

QC exec summary sample_name/ID probe % failures probe_failure pass auto-qc result (only if present
in kwargs passed in, otherwise omitted) MDS pass signal intensity pass if any fails, fail it (so overall
pass)

92 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

table 2: meta array type (detect from data) number of samples (from data) processing pipeline version
number (passed in) date processed (passed in) avg probe failure rate percent of samples that failed any
failures from ‘control probes’

reqs a way to capture warnings of data-off-chart

open_error_buffer()
preparing a stream of log messages to add to report appendix.

page_of_paragraphs(para_list, pdf, line_height=’double’, fontsize=None)
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.text.html (0,0) is lower left; (1,1) is upper right.

This version estimates the size of each paragraph and moves the origin downward accordingly. Thsis is
tricky because the anchors are lower left, not upper left.

It is ok if a paragraph contains whitespace line breaks, OR each paragraph is one long line to be wrapped
here. Also - if a paragraph wraps, this accounts for it in total lines count, so everything fits on a page. The
default fontsize is 12 if not specified.

page_of_text(text, pdf, fontsize=None)
text is a single big string of text, with whitespace for line breaks. https://matplotlib.org/3.1.1/api/_as_gen/
matplotlib.pyplot.text.html (0,0) is lower left; (1,1) is upper right

parse_custom_tables(tables)
tables is a list of { ‘title’: “some title, optional”, ‘col_names’: [list of strings], ‘row_names’: [list of strings,
optional], ‘data’: [list of lists, with order matching col_names], ‘order_after’: string name of the plot this
should come after. It cannot appear first in list. }

to_table(list_of_lists, col_names, row_names=None, add_title=”, font_size=’auto’)

• embeds a table in a PDF page.

• attempts to split long tables into multiple pages.

• should warn if table is too wide to fit.

• font_size: - auto: let matplotlib figure out the best size. This breaks if one column or value is
soooooooper long. - truncate: IN FUTURE, chop off each value that is too long, to force it to fit
on a page. Data loss. - INT: set the font for this table at this size (for control freaks) - None: default –
use font size 12.

4.6.29 Run QC pipeline

Run a variety of probe and sample filters in tandem, then plot results

by specifying all of your options at once, instead of running every part of methylcheck in piacemeal fashion.

this is analogous to using the methylcheck CLI, but for notebooks/scripts

required:

df: (required)

• data as a DataFrame of beta values (or DataFrame of m_values)

• sample names in columns and probes in rows

parameters:

verbose: (True/False) default: False – shows extra info about processing if True

silent: (True/False) default: False – suppresses all warnings/info

exclude_sex: filters out probes on sex-chromosomes

4.6. API Reference 93

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.text.html
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.text.html
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.text.html

methylcheck Documentation, Release 0.8.4

exclude_control: filters out illumina control probes

exclude_all: filters out the most probes (sex-linked, control, and all sketchy-listed probes from papers)

exclude: (list of strings, shorthand references to papers with sketchy probes to exclude)

If the array is 450K the publications may include: 'Chen2013' 'Price2013'
'Zhou2016' 'Naeem2014' 'DacaRoszak2015'

If the array is EPIC the publications may include: 'Zhou2016' 'McCartney2016'

or these reasons: 'Polymorphism' 'CrossHybridization' 'BaseColorChange'
'RepeatSequenceElements'

or use 'exclude_all': to do maximum filtering, including all of these papers’ lists.

plot: (list of strings) [‘mean_beta_plot’, ‘beta_density_plot’, ‘cumulative_sum_beta_distribution’,
‘beta_mds_plot’, ‘all’] if ‘all’, then all of these plots will be generated. if omitted, no plots are
created.

save_plots: (True|False) default: False

export (True|False): default: False – will export the filtered df as a pkl file if True

note: this pipeline cannot also apply the array-level methylcheck.run_qc() function because that relies on additional
probe information that may not be present. Everything in this pipeline applies to a dataframe of beta or m-values
for a set of samples.

returns: a filtered dataframe object

4.6.30 filtering probes

methylcheck.probes.exclude_sex_control_probes(df, array, no_sex=True, no_control=True,
verbose=False)

Exclude probes from an array, and return a filtered array.

df: dataframe of beta values or m-values. array: type of array used.

{‘27k’, ‘450k’, ‘EPIC’, ‘EPICPLUS’, ‘MOUSE’} or {‘IlluminaHumanMethyla-
tion27k’,’IlluminaHumanMethylation450k’,’IlluminaHumanMethylationEPIC’, ‘mouse’} or
{‘27k’, ‘450k’, ‘epic’, ‘epic+’, ‘mouse’}

no_sex: bool (default True) if True, will remove all probes that target X and Y chromosome locations, as they
are sex specific – and lead to multiple clusters when trying to detect and remove outliers (noisy data).

no_control: bool (default True) if True, removes Illumina’s internal control probes.

verbose: bool (default False) reports out on number of probes removed.

a dataframe with samples removed.

methylcheck.probes.exclude_probes(df, probe_list)
Exclude probes from a dataframe of sample beta values. Use list_problem_probes() to obtain a list of probes (or
pass in the names of ‘Criteria’ from problem probes), then pass that in as a probe_list along with the dataframe
of beta values (array)

Resolves a problem whereby probe lists have basic names, but samples have additional meta data added. Exam-
ple:

probe list [‘cg24168924’, ‘cg15886294’, ‘cg05943251’, ‘cg05579622’, ‘cg01797553’, ‘cg14885690’,
‘cg12490816’, ‘cg02631583’, ‘cg17361593’, ‘cg15000031’, ‘cg21515494’, ‘cg17219246’, ‘cg10838001’,
‘cg13913475’, ‘cg00492169’, ‘cg20352786’, ‘cg05932698’, ‘cg06736139’, ‘cg08333283’, ‘cg10010298’,

94 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

‘cg25984048’, ‘cg27287823’, ‘cg19269713’, ‘cg12456833’, ‘cg26161708’, ‘cg04984052’, ‘cg00033806’,
‘cg23255774’, ‘cg10717379’, ‘cg00880984’, ‘cg01818617’, ‘cg18563133’, ‘cg15895341’, ‘cg08155050’,
‘cg06820286’, ‘cg04325909’, ‘cg15094920’, ‘cg08037129’, ‘cg11161730’, ‘cg06044537’, ‘cg11936560’,
‘cg12404870’, ‘cg12670496’, ‘cg01473643’, ‘cg08605930’, ‘cg16553354’, ‘cg22175254’, ‘cg22966295’,
‘cg07346931’, ‘cg06234741’]

sample probe names

Index([‘cg00000029_II_F_C_rep1_EPIC’, ‘cg00000103_II_F_C_rep1_EPIC’,
‘cg00000109_II_F_C_rep1_EPIC’, ‘cg00000155_II_F_C_rep1_EPIC’,

‘cg00000158_II_F_C_rep1_EPIC’, ‘cg00000165_II_R_C_rep1_EPIC’,
‘cg00000221_II_R_C_rep1_EPIC’, ‘cg00000236_II_R_C_rep1_EPIC’, . . .
‘ch.9.98957343R_II_R_O_rep1_EPIC’, ‘ch.9.98959675F_II_F_O_rep1_EPIC’,
‘ch.9.98989607R_II_R_O_rep1_EPIC’, ‘ch.9.991104F_II_F_O_rep1_EPIC’]

This chops off anything after the first underscore, and compares with probe_list to see if percent match increases.
It then drops probes from array that match probe_list, at least partially.

ADDED: checking whether array.index is string or int type. Regardless, this should work and not alter the
original index. ADDED v0.6.4: pass in a string like ‘illumina’ or ‘McCartney2016’ and it will fetch the list for
you.

ref: https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html#
howwhy-probes-are-masked SESAME probe exclusion lists were pulled using these R commands:

EPIC_Zhou = sesameDataGet(‘EPIC.probeInfo’)$mask # 104454 probes HM450_Zhou <- sesame-
DataGet(‘HM450.probeInfo’))$mask # 65144 probes

methylcheck.probes.problem_probe_reasons(array, criteria=None)
Returns a dataframe of probes to be excluded, based on recommendations from the literature. Mouse and 27k
arrays are not supported.

array: string name for type of array used ‘IlluminaHumanMethylationEPIC’, ‘IlluminaHumanMethyla-
tion450k’ This shorthand names are also okay:

{‘EPIC’,’EPIC+’,’450k’,’27k’,’MOUSE’, ‘mouse’, ‘epic’, ‘450k’}

criteria: list List of the publications to use when excluding probes. If the array is 450K the publications may
include:

‘Chen2013’ ‘Price2013’ ‘Zhou2016’ ‘Naeem2014’ ‘DacaRoszak2015’ ‘Sesame’ – uses the de-
fault mask imported from sesame

If the array is EPIC the publications may include: ‘Zhou2016’ ‘McCartney2016’ ‘Sesame’ – uses the
default mask imported from sesame

or these reasons: ‘Polymorphism’ ‘CrossHybridization’ ‘BaseColorChange’ ‘RepeatSequenceElements’

If no publication list is specified, probes from all publications will be added to the exclusion list. If more
than one publication is specified, all probes from all publications in the list will be added to the exclusion
list.

returns: dataframe this returns a dataframe showing how each probe in the list is categorized for exclusion
(based on criteria: reasons and paper-refs). This output is not suitable for other functions that just expect a
list of probe names.

methylcheck.probes.list_problem_probes(array, criteria=None, custom_list=None)
Function to create a list of probes to exclude from downstream processes.

By default, all probes that have been noted in the literature to have polymorphisms, cross-hybridization, repeat
sequence elements and base color changes are included in the DEFAULT exclusion list.

4.6. API Reference 95

https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html#howwhy-probes-are-masked
https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html#howwhy-probes-are-masked

methylcheck Documentation, Release 0.8.4

• You can customize the exclusion list by passing in either publication shortnames or criteria into the func-
tion.

• you can combine pubs and reasons into the same list of exclusion criteria.

• if a publication doesn’t match your array type, it will raise an error and tell you.

Including any of these labels in pubs (publications) or criteria (described below) will result in these probes NOT
being included in the final exclusion list.

User also has ability to add custom list of probes to include in final returned list.

Parameters:

array: string name for type of array used ‘IlluminaHumanMethylationEPIC’, ‘IlluminaHuman-
Methylation450k’ This shorthand names are also okay:

{'EPIC','EPIC+','450k','27k','MOUSE'}

criteria: list List of the publications to use when excluding probes. If the array is 450K the
publications may include: 'Chen2013' 'Price2013' 'Zhou2016' 'Naeem2014'
'DacaRoszak2015'

If the array is EPIC the publications may include: 'Zhou2016' 'McCartney2016'

If array is EPIC or EPIC+, specifying 'illumina' will remove 998 probes the manufacturer
has recommended be excluded. The defects only affected a small number of EPIC arrays pro-
duced.

If no publication list is specified, probes from all publications will be added to the exclusion list.
If more than one publication is specified, all probes from all publications in the list will be added
to the exclusion list.

criteria: lists List of the criteria to use when excluding probes. List may contain the following
exculsion criteria: ‘‘’Polymorphism’

‘CrossHybridization’ ‘BaseColorChange’ ‘RepeatSequenceElements’ ‘illumina’‘‘

If no criteria list is specified, all critera will be excluded. If more than one criteria is specified,
all probes meeting any of the listed criteria will be added to the exclusion list.

custom_list: list, default None User-provided list of probes to be excluded. These probe names
have to match the probe names in your data exactly.

Returns:

probe_exclusion_list: list List containing probe identifiers to be excluded

or probe_exclusion_dataframe: dataframe DataFrame containing probe names as index and rea-
son | paper_reference as columns

If you supply no criteria (default), then maximum filtering occurs:

• EPIC will have 389050 probes removed

• 450k arrays will have 341057 probes removed

Reason lists for 450k and probes removed:

• Daca-Roszak_etal_2015 (96427)

• Chen_etal_2013 (445389)

• Naeem_etal_2014 (146590)

• Price_etal_2013 (284476)

96 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

• Zhou_etal_2016 (184302)

• Polymorphism (796290)

• CrossHybridization (211330)

• BaseColorChange (359)

• RepeatSequenceElements (149205)

Reason lists for epic and probes removed:

• McCartney_etal_2016 (384537)

• Zhou_etal_2016 (293870)

• CrossHybridization (173793)

• Polymorphism (504208)

• BaseColorChange (406)

methylcheck.probes.drop_nan_probes(df, silent=False, verbose=False)
accounts for df shape (probes in rows or cols) so dropna() will work.

the method used inside MDS may be faster, but doesn’t tell you which probes were dropped.

4.6.31 plotting functions

methylcheck.samples.assign(df, two_pass=False)

Manually and interactively assign each sample to a group, based on beta-value distribution shape. This
function is not documented or supported anymore.

how: sorts samples by the position of their peak intensity in beta dist, then lets the human assign a number to
each. assumes that peaks that differ by > 0.1 of the 0 to 1 range are different clusters. fills in expected
cluster #.

options: if two_pass==True: it lets user go through every cluster a second time and split larger clusters further.
sometimes a cluster isn’t obviously two groups until it is separated from the larger dataset.

methylcheck.samples.plot_assigned_groups(df, user_defined_groups)
takes the ‘sample: group’ dictionary and plots each sub-set. returns a lookup dict of each cluster –> [list of
samples].

methylcheck.samples.mean_beta_plot(df, verbose=False, save=False, silent=False)
Returns a plot of the average beta values for all probes in a batch of samples.

Input (df):

• a dataframe with probes in rows and sample_ids in columns.

• to get this formatted import, use methylprep.consolidate_values_for_sheet(),

as this will return a matrix of beta-values for a batch of samples (by default).

methylcheck.samples.beta_density_plot(df, verbose=False, save=False, silent=False,
reduce=0.1, plot_title=None, ymax=None,
return_fig=False, full_range=False, high-
light_samples=None, figsize=(12, 9),
show_labels=None, filename=’beta.png’)

Returns a plot of beta values for each sample in a batch of samples as a separate line. Y-axis values is an arbitrary
scale, similar to a histogram of probes that have a given beta value. X-axis values are beta values (0 to 1) for a
single samples

4.6. API Reference 97

methylcheck Documentation, Release 0.8.4

Input (df):

• a dataframe with probes in rows and sample_ids in columns.

• to get this formatted import, use methylprep.consolidate_values_for_sheet(), as this
will return a matrix of beta-values for a batch of samples (by default).

Returns: None (but if return_fig is True, returns the figure object instead of showing plot)

Parameters:

verbose: display extra messages

save: if True, saves a copy of the plot as a png file.

silent: if True, eliminates all messages (useful for automation and scripting)

reduce: when working with datasets and you don’t need publication quality “exact” plots, supply a float
between 0 and 1 to sample the probe data for plotting. We recommend 0.1, which plots 10% of the
450k or 860k probes, and doesn’t distort the distribution much. Values below 0.001 (860 probes out of
860k) will show some sampling distortion. Using 0.1 will speed up plotting 10-fold of large batches.

ymax (None): If defined, upper limit of plot will not exceed this value. But it y-range can be smaller if
values are less than this range.

full_range: (False) if True, x-axis will be auto-scaled, instead of fixed in the 0-to-1.0 range.

return_fig: (False) if True, returns figure object instead of showing plot.

highlight_samples: a string or list of df col-names that, if provided, will highlight sample(s) in blue and
bold in plot returned. all other samples in df will be grayed out. Useful for QC reports.

figsize: tuple of width, height, with 12,9 being default if ommitted.

show_labels: By default, sample names appear in a legend if there are <30 samples. Otherwise, ommitted.
Use this to force legend on or off.

Note: if the sample_ids in df.index are not unique, it will make them so for the purpose of plotting.

methylcheck.samples.sample_plot(df, **kwargs)
A more intuitive alias of beta_density_plot(), since not all values are beta distributions. Note: This
changes the ‘‘beta_density_plot()‘ defaults to show a reduced, faster version of probe data, sampling 10% of
probes present for10-fold faster processing time.

methylcheck.samples.cumulative_sum_beta_distribution(df, cutoff=0.7, verbose=False,
save=False, silent=False)

Attempts to filter outlier samples based on the cumulative area under the curve exceeding a reasonable value
(cutoff). This method only works on poor quality samples that are better identified using ControlReporter
summary (CLI: ‘methylcheck controls’)

Inputs: DataFrame – wide format (probes in columns, samples in rows) cutoff (default 0.7) silent – suppresses
figure, so justs returns transformed data if False. if save==True: saves figure to disk.

Returns: dataframe with subjects removed that exceed cutoff value.

methylcheck.samples.beta_mds_plot(df, filter_stdev=1.5, verbose=False, save=False,
silent=False, multi_params={’draw_box’: True},
plot_removed=False, nafill=’quick’, poobah=None,
palette=None, labels=None, extend_poobah_range=True,
plot=True)

Performs multidimensional scaling on a dataframe of samples

Arguments

df: dataframe of beta values for a batch of samples (rows are probes; cols are samples)

98 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

filter_stdev: a value (unit: standard deviations) between 0 and 3 (typically) that represents
the fraction of samples to include, based on the standard deviation of this batch of samples. So
using the default value of 1.5 means that all samples whose MDS-transformed beta sort_values
are within +/- 1.5 standard deviations of the average beta are retained in the data returned.

plot_removed: if True, displays a plot of samples’ beta-distributions that were removed by MDS
filtering. ignored if silent=True.

nafill: (‘quick’ | ‘impute’) by default, most samples will contain missing values where probes
failed the signal-noise detection in methylprep. By default, it will use the fastest method of
filling in samples from adjacent sample’s probe values with the ‘quick’ method. Or, if you want
it to use the average value for all samples for each probe, use ‘impute’, which will be much
slower.

poobah: path to poobah_values.pkl file. Default is None. If supplied, this will color code dots
according to percent of failed probes for each sample as a second dimension of QC on the plot.
Does not filter or affect the output dataframe returned.

palette: Optional - Specify a matplotlib/seaborn palette name, such as ‘CMRmap_r’, ‘cool-
warm’, or ‘nipy_spectral’. Default is ‘twilight’.

labels: pass in a dictionary with sample names found in df columns and a (number or string)
representing the groups to assign samples to. Use this to color-code the samples against a known
classification scheme, such as cell type, and observe whether the MDS clustering pattern aligns
with this input parameter. This feature is not compatible with poobah or multi_params.

extend_poobah_range: True means 7 colors appear covering 0-30%. False means 5 colors and
0-20%. Default is True.

multi_params: is a dict, passed into this function from a multi-compare-MDS wrapper func-
tion, containing: {return_plot_obj=True, fig=None, ax=None, draw_box=False, xy_lim=None,
color_num=0, PSF=1.2 – plot scale factor (margin beyond points to display)}

Options

verbose: If True, provides additional messages

silent:

• if running from command line in an automated process, you can run in silent mode to sup-
press any user interaction.

• In this case, whatever filter_stdev you assign is the final value, and a file will be processed
with that param.

plot: (default True)

• plot is False, this suppresses plots (images) from being generated and shown on screen.

• .png files are still saved if save == True.

Returns

Returns a filtered dataframe. If return_plot_obj is True, it returns the plot, for making overlays
in methylize.

Requires

pandas, numpy, pyplot, sklearn.manifold.MDS

Notes

this will remove probes from ALL samples in batch from consideration if any samples contain NaN
(missing values) for that probe.

4.6. API Reference 99

methylcheck Documentation, Release 0.8.4

methylcheck.samples.mean_beta_compare(df1, df2, save=False, verbose=False, silent=False)
Use this function to compare two dataframes, pre-vs-post filtering and removal of outliers. args:

the first argument (df1) is the “pre” dataframe of samples the second argument (df2) is the “post”
dataframe of samples

kwargs: verbose: additional output silent: suppresses figure, so no output unless save==True too.

methylcheck.samples.combine_mds(*args, **kwargs)
To combine (or segment) datasets for multidimensional scaling analysis

Use this function on multiple dataframes to combine datasets, or to visualize parts of the same dataset in separate
colors. It is a wrapper of methylcheck.beta_mds_plot() and applies multidimensional scaling to cluster similar
samples based on patterns in probe values, as well as identify possible outlier samples (and exclude them).

• combine datasets,

• run MDS,

• see how each dataset (or subset) overlaps with the others on a plot,

• exclude outlier samples based on a composite cutoff box (the average bounds of the component data sets)

• calculate the percent of data excluded from the group

• *args:

– pass in any number of pandas dataframes, and it will combine them into one mds plot.

– alternatively, you may pass in a list of filepaths as strings, and it will attempt to load these files as
pickles.

but they must be pickles of pandas dataframes containing beta values or m-values

• silent: (default False) (automated processing mode) if True, suppresses most information and avoids
prompting user for anything. silent mode processes data but doesn’t show the plot.

• save: (default False) if True, saves the plot png to disk.

• verbose: (default False) if True, prints extra debug information to screen or logger.

• filter_stdev: how broadly should you retain samples? units are standard deviations, defaults to 1.5
STDEV. if you increase this number, fewer outlier samples will be removed.

• returns a dataframe of transformed samples

methylcheck.qc_plot.run_qc(path)
Generates all QC plots for a dataset in the path provided. if process –all was used to create control probes and
raw values for QC, because it uses four output files:

• beta_values.pkl

• control_probes.pkl

• meth_values.pkl or noob_meth_values.pkl

• unmeth_values.pkl or noob_unmeth_values.pkl

output is all to screen, so best to use in a jupyter notebook. If you prefer output in a PDF, use ReportPDF instead.

Note: this will only look in the path folder; it doesn’t do a recursive search for matching files.

100 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

methylcheck.qc_plot.plot_beta_by_type(beta_df, probe_type=’all’, return_fig=False,
silent=False, on_lambda=False)

compare betas for type I and II probes – (inspired by the plotBetasByType() function)

Plot the overall density distribution of beta values and the density distributions of the Infinium I or II probe types
1 distribution plot; user defines type (I or II infinium)

Doesn’t work with 27k arrays because they are all of the same type, Infinium Type I.

options: return_fig: (default False) if True, returns a list of figure objects instead of showing plots.

methylcheck.qc_plot.qc_signal_intensity(data_containers=None, path=None,
meth=None, unmeth=None, poobah=None,
palette=None, noob=True, silent=False, ver-
bose=False, plot=True, cutoff_line=True,
bad_sample_cutoff=11.5, return_fig=False)

Suggests sample outliers based on methylated and unmethylated signal intensity.

path to csv files processed using methylprep these have “noob_meth” and “noob_unmeth” columns
per sample file this function can use. if you want it to processed data uncorrected data.

data_containers output from the methylprep.run_pipeline() command when run in a script or note-
book. you can also recreate the list of datacontainers using methylcheck.load(<filepath>,’meth’)

(meth and unmeth) if you chose process –all you can load the raw intensities like
this, and pass them in: meth = pd.read_pickle(‘meth_values.pkl’) unmeth =
pd.read_pickle(‘unmeth_values.pkl’) THIS will run the fastest.

(meth and unmeth and poobah) if poobah=None (default): Does nothing if poobah=False: sup-
presses this color if poobah=dataframe: color-codes samples according to percent probe failure
range,

but only if you pass in meth and unmeth dataframes too, not data_containers object.

if poobah=True: looks for poobah_values.pkl in the path provided.

cutoff_line: True will draw the line; False omits it. bad_sample_cutoff (default 11.5): set the cutoff
for determining good vs bad samples, based on signal intensities of meth and unmeth fluorescence
channels. 10.5 was borrowed from minfi’s internal defaults. noob: use noob-corrected meth/unmeth
values verbose: additional messages plot: if True (default), shows a plot. if False, this function returns
the median values per sample of meth and unmeth probes. return_fig (False default), if True, and plot
is True, returns a figure object instead of showing plot. compare: if the processed data contains both
noob and uncorrected values, it will plot both in different colors palette: if using poobah to color
code, you can specify a Seaborn palette to use.

this will draw a diagonal line on plots

A dictionary of data about good/bad samples based on signal intensity

TODO: doesn’t return both types of data if using compare and not plotting doesn’t give good error message for
compare

methylcheck.qc_plot.plot_M_vs_U(data_containers_or_path=None, meth=None, unmeth=None,
poobah=None, noob=True, silent=False, verbose=False,
plot=True, compare=False, return_fig=False, palette=None,
cutoff_line=True)

plot methylated vs unmethylated probe intensities

4.6. API Reference 101

methylcheck Documentation, Release 0.8.4

PATH to csv files processed using methylprep these have “noob_meth” and “noob_unmeth”
columns per sample file this function can use. if you want it to processed data uncorrected
data. (If there is a poobah_values.pkl file in this PATH, it will use the file to color code points)

data_containers = run_pipeline(data_dir = ‘somepath’,

save_uncorrected=True, sample_sheet_filepath=’samplesheet.csv’)

you can also recreate the list of datacontainers using methylcheck.load(<filepath>,’meth’)

(meth and unmeth) if you chose process –all you can load the raw intensities like
this, and pass them in: meth = pd.read_pickle(‘meth_values.pkl’) unmeth =
pd.read_pickle(‘unmeth_values.pkl’) THIS will run the fastest.

poobah filepath: You may supply the file path to the p-value detection dataframe. If supplied, it
will color code points on the plot. False: set poobah to False to suppress this coloring. None
(default): if there is a poobah_values.pkl file in your path, it will use it.

optional params: noob: use noob-corrected meth/unmeth values verbose: additional messages plot: if True
(default), shows a plot. if False, this function returns the median values per sample of meth and unmeth
probes. return_fig: (False default), if True (and plot is true), returns the figure object instead of showing it.
compare:

if the processed data contains both noob and uncorrected values, it will plot both in different
colors the compare option will not work with using the ‘meth’ and ‘unmeth’ inputs, only with
path or data_containers.

cutoff_line: True will draw a diagonal line on plots. the cutoff line is based on the X-Y scale of the
plot, which depends on the range of intensity values in your data set.

TODO: doesn’t return both types of data if using compare and not plotting doesn’t give good error message for
compare

methylcheck.qc_plot.plot_controls(path=None, subset=’all’, return_fig=False)
internal array QC controls (available with the –save_control or –all methylprep process option)

path can either be a path to the file, or a path to the folder containing a file called ‘con-
trol_probes.pkl’, or it can be the dictionary of control dataframes in control_probes.pkl.

subset (‘staining’ | ‘negative’ | ‘hybridization’ | ‘extension’ | ‘bisulfite’ | ‘non-polymorphic’ |
‘target-removal’ | ‘specificity’ | ‘all’):

‘all’ will plot every control function (default)

return_fig (False) if True, returns a list of matplotlib.pyplot figure objects INSTEAD of showing
then. Used in QC ReportPDF.

if there are more than 30 samples, plots will not have sample names on x-axis.

methylcheck.qc_plot.bis_conversion_control(path_or_df, use_median=False,
on_lambda=False, verbose=False)

GCT score: requires path to noob_meth or raw meth_values.pkl; or you can pass in a meth dataframe.
use_median: not supported yet. Always uses mean of probe values

102 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.6.32 sex prediction

methylcheck.predict.get_sex(data_source, array_type=None, verbose=False, plot=False,
save=False, on_lambda=False, median_cutoff=-2, in-
clude_probe_failure_percent=True, poobah_cutoff=20, cus-
tom_label=None, return_fig=False, return_labels=False)

This will calculate and predict the sex of each sample.

the “data_source” can be any one of: path – to a folder with csv data that contains processed sam-
ple data path – to a folder with the ‘meth_values.pkl’ and ‘unmeth_values.pkl’ dataframes path
– to a folder also containing samplesheet pkl and poobah_values.pkl, if you want to compare
predicted sex with actual sex. data_containers – object created from methylprep.run_pipeline()
or methylcheck.load(path, ‘meth’) tuple of (meth, unmeth) dataframes

array_type (string) enum: {‘27k’,’450k’,’epic’,’epic+’,’mouse’} if not specified, it will load the
data from data_source and determine the array for you.

median_cutoff (default is -2) the minimum difference in the medians of X and Y probe copy num-
bers to assign male or female (copied from the minfi sex predict function)

include_probe_failure_percent: True: includes poobah percent per sample as column in the output
table and on the plot. Note: you must supply a ‘path’ as data_source to include poobah in plots.

poobah_cutoff The maximum percent of sample probes that can fail before the sample fails. Default
is 20 (percent) Has no effect if include_probe_failure_percent is False.

plot True: creates a plot, with option to save as image or return_fig.

save True: saves the plot, if plot is True

return_fig If True, returns a pyplot figure instead of a dataframe. Default is False. Note: return_fig
will not show a plot on screen.

return_labels: (requires plot == True) When using poobah_cutoff, the figure only includes A-
Z,1. . . N labels on samples on plot to make it easier to read. So to get what sample_ids these
labels correspond to, you can rerun the function with return_labels=True and it will skip plotting
and just return a dictionary with sample_ids and these labels, to embed in a PDF report if you
like.

custom_label: Option to provide a dictionary with keys as sample_ids and values as labels to apply
to samples. e.g. add more data about samples to the multi-dimensional QC plot

while providing a filepath is the easiest way, you can also pass in a data_containers object, a list
of data_containers containing raw meth/unmeth values, instead. This object is produced by methyl-
prep.run_pipeline, or by using methylcheck.load(filepath, format=’meth’) and lets you customize the import
if your files were not prepared using methylprep (non-standand CSV columns, for example)

If a poobah_values.pkl file can be found in path, the dataframe returned will also include percent of probes for
X and Y chromosomes that failed quality control, and warn the user if any did. This feature won’t work if a
containers object or tuple of dataframes is passed in, instead of a path.

Note: ~90% of Y probes should fail if the sample is female. That chromosome is missing.

methylcheck.predict.infer_strain(beta_df_or_filepath, manifest=None)
Uses SNPS to identify the mouse strain (among 36 possibilities), using an internal lookup ref table from sesame.

argument:

beta_df_or_filepath note that beta_df does not contain the snps, but you can provide access to
a control_probes.pkl file and it will load and pull the snps for analysis. Or, if you use
methylcheck.load(<path>, format=’beta_csv’) the beta_df WILL contain snps.

4.6. API Reference 103

methylcheck Documentation, Release 0.8.4

manifest (default: None) It load the mouse manifest by default. But if you want to provide a custom
manifest, you can.

Note: This function calculates Variant allele frequency (VAF) in an intermediate step: - VAF is the percentage
of sequence reads observed matching a specific DNA variant divided by the overall coverage at that locus. -
VAF is a surrogate measure of the proportion of DNA molecules in the original specimen carrying the variant.

Possible Matching Strains:

‘DBA_1J’, ‘DBA_2J’, ‘AKR_J’, ‘C57L_J’, ‘129S5SvEvBrd’, ‘BALB_cJ’, ‘C57BL_10J’,
‘BTBR_T+_Itpr3tf_J’, ‘LP_J’, ‘A_J’, ‘129S1_SvImJ’, ‘RF_J’, ‘LEWES_EiJ’, ‘PWK_PhJ’,
‘BUB_BnJ’, ‘SPRET_EiJ’, ‘MOLF_EiJ’, ‘NZB_B1NJ’, ‘NZO_HlLtJ’, ‘NZW_LacJ’, ‘KK_HiJ’,
‘129P2_OlaHsd’, ‘C3H_HeJ’, ‘WSB_EiJ’, ‘CBA_J’, ‘C3H_HeH’, ‘NOD_ShiLtJ’, ‘C57BR_cdJ’,
‘CAST_EiJ’, ‘ZALENDE_EiJ’, ‘C58_J’, ‘C57BL_6NJ’, ‘ST_bJ’, ‘I_LnJ’, ‘SEA_GnJ’, ‘FVB_NJ’

4.7 Release History

4.7.1 v0.8.3

• get_sex bug fixes; supports plots, returning figure, returning labels, or returning predicted sex dataframe

• add testing via github actions

• updated documentation

4.7.2 v0.8.2

• added support for sample sheets with the legacy Illumina [Header] . . . [Data] format. This requires
methylprep be installed for the controls report to run now.

4.7.3 v0.8.1

• .load gives clearer error when loading beta values from CSVs (‘beta_csv’) if probe names are not unique, and
returns a list of series for each sample when indeces fail to merge (pandas.concat)

• .beta_mds_plot() can now suppress the interactive portion and still display plots, using silent=True and
plot=True (plot is a new kwarg, and defaults to True). Previously silent mode would suppress both
prompts and plot display. Change in behavior: silent mode will not disable plotting. Must also include
plot=False for that.

4.7.4 v0.8.0

• Fixed bug in .load that requires tqdm >= 4.61.2

• Added more detailed error message on .load; it cannot load and merge two meth/unmeth dataframes with
redundant probe names.

104 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.7.5 v0.7.9

• ReportPDF accepts ‘poobah_colormap’ kwarg to feed in beta_mds_plot colormap.

• ReportPDF custom tables: You can insert your custom table on the first page by specifying ‘order_after’ ==
None.

• beta_mds_plot palette can now be any matplotlib colormap name. Defaults to ‘magma’ if not specified.
The palette is only used to color-code poobah failure rates, if the poobah file path is specified.

• beta_mds_plot new kwarg extend_poobah_range: Default (True) shows 7 colors for poobah failure
rates. If False, will show only 5.

4.7.6 v0.7.6

• Reading IDATs loading bar didn’t work correctly, showed up after loading.

• Fixed error/logging messages:

– exclude_sex_control_probes() said 916 control probes were removed, then said “it appears your sample
had no control probes”

– Erroneous message about missing values in poobah file: “color coding may be inaccurate.”

– Filtering probes info message said there were N samples when it meant probes.

– methylprep.download.build_composite_dataset() Process time was negative.

• Target Removal and Staining graphs in plot_controls() had unreadable X-axis sample names. Labels are sup-
pressed when showing more than 30 samples.

• methylcheck.detect_array() sometimes returned array types in wrong case. All functions expect lowercase array
types now.

– resolves exclude_sex_control_probes bugs.

• run_qc() and get_sex() did not recognize poobah_values.pkl on MacOS when using “~” in the filepath.

• methylcheck.problem_probe_reasons() lists probes matching any/all criteria when passing in no arguments, as
documented

• get_sex() understands samplesheet ‘m’ and ‘f’ when not capitalized now.

• Load_both: always returns dataframe with probes in rows now, like .load() does.

• plot_M_vs_U now loads the noob_meth_values.pkl files if noob=True and files are found; otherwise it uses
whatever meth/unmeth data is available.

• Methylcheck.qc_plot.qc_signal_intensity returns a dictionary of data about good/bad samples based on signal
intensity. Previously it was only returning this if ‘plot’ was False.

• controls_report() bug fixed: methylprep was producing samplesheet meta data pickles that contained Sample_ID
twice, because the GEO series_matrix files had this data appear twice. This broke the report, but this case is
caught and avoided now. controls_report() will recognize a wider array of samplesheet filenames now; anything
with ‘samplesheet’ or ‘meta_data’ in the filename.

4.7.7 v0.7.5

• added ‘methylcheck report’ CLI option to create a ReportPDF

• updated documentation

4.7. Release History 105

methylcheck Documentation, Release 0.8.4

• minor bug fixes in read_geo()

– qc_plot() now handles mouse probe type differently

– handles importing from multiple pandas versions correctly

– read_geo can open series_matrix.txt files now

4.7.8 v0.7.4

• fixed big where csv data_files were not included in pypi

4.7.9 v0.7.3

• Improved ReportPDF custom tables option

– if fields are too long, it will truncate them or auto scale the font size smaller to fit on page.

4.7.10 v0.7.2

• added GCT score to controls_report() used in the ReportPDF class.

• ReportPDF changes

– uses noob_meth/unmeth instead of raw, uncorrected meth/unmeth values for GCT and U vs M plot

– inverted poobah table to report percent passing (instead of failing) probes per sample

– this changed input from ‘poobah_max_percent’ (default 5%) to ‘poobah_min_percent’, (default 80%)

– M_vs_U not included by default, because redundant with qc_signal_intensity

– M_vs_U compare=True now labels each sample and has legend, so you can see effect of NOOB+dye
correction on batch

– added poobah color-coding to MDS plot

• get_sex improved plotting

– will read poobah data and size sample points according to percent of failed probes

– save plots, or return fig, and more options now

4.7.11 v0.7.1

• Added a controls_report() function that creates a spreadsheet summary of control probe performance.

• New unit test coverage. Note that because methylprep v1.4.0 changes processing, the results will change slightly
to match sesame instead of minfi, with nonlinear-dye-bias correction and infer-type-I-probe-switching.

• changed org name from FoxoBioScience to FoxoTech

106 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

4.7.12 v0.7.0

• Illumina Mouse Array Support

• Complete rewrite of documentation

• qc_signal_intensity and plot_M_vs_U have additional options, including superimposing poobah (percent probe
failures per sample) on the plot coloring.

• .load will work on control_probes.pkl and mouse_probes.pkl files (with alt structure: dictionary of dataframe)

• .sample_plot uses “best” legend positioning now, because it was not fitting on screen with prev settings.

4.7.13 v0.6.4

• get_sex() function returns a dataframe that also includes percent of X and Y probes that failed p-value-probe
detection, as an indication of whether the predicted sex is reliable.

• better unit test coverage of predictions, load, load_both, and container_to_pkl functions

• fixed bug in load(‘meth_df’)

4.7.14 v0.6.3

• fixed bug in detect_array() where it labeled EPIC+ as EPIC

4.7.15 v0.6.2

• minor fixes to load() and read_geo()

• exclude_probes() accepts problem_probes criteria as alternate way to specify probes.

– Exclude probes from a df of samples. Use list_problem_probes() to obtain a list of probes (or pass in the
names of ‘Criteria’ from problem probes), then pass that in as a probe_list along with the dataframe of
beta values (array)

• load_processed now has a –no_filter=False option that will remove probes that failed p-value detection, if pass-
ing in beta_values.pkl and poobah_values.pkl files.

• load() now handles gzipped files the same way (so .pkl.gz or .csv.gz OK as file or folder inputs)

• seaborn v0.10 –> v0.11 deprecrated the distplot() function that was used heavily. So now this employs kdeplot()
in its place, with similar results.

4.7.16 v0.6.1

• exposed more beta_density_plot parameters, so it can be used to make a QC plot (highlighting one or several
samples within a larger batch, and graying out the others in the plot).

4.7.17 v0.6.0

• improved read_geo() function, for downloading GEO methylation data sets and parsing meta_data from projects.

• changed org name from life-epigenetics to FoxoBioScience on Github.

4.7. Release History 107

methylcheck Documentation, Release 0.8.4

4.7.18 v0.5.9

• qc_plot bug fixes -99

4.7.19 v0.5.7

• -99 bug in negative controls fixed

4.7.20 v0.5.4

• tweaking custom-tables in ReportPDF

4.7.21 v0.5.2

• ReportPDF.run_qc() supports on_lambda, and any functions that require .methylprep_manifest_files can be set
to look for manifests in /tmp using on_lambda=True

4.7.22 v0.5.1

• sklearn now optional for MDS

4.7.23 v0.5.0

• adds kwargs to functions for silent processing returning figure objects, and a report_pdf class that can run QC
and generate a PDF report.

• added version

• p-value probe detection

• hdbscan clustering functions

• more QC methods testing

4.7.24 v0.4.0

• more tests, smart about df orientation, and re-organized files

• added read_geo() for processed datafiles, and unit tests for it. Works with txt,csv,xlsx,pkl files

• read_geo() docs

• debugged filters.list_problem_probes:

• updated the docs to have correct spelling for refs/reasons.

• added a function that lets you see more detail on the probes and reasons/pubs criteria

• added more genome studio QC functions,

– improved .load function (but not consolidated through methyl-suite yet)

– function .assign() for manually categorizing samples

– unit testing on the predict.sex function

108 Chapter 4. Tutorials and Guides

methylcheck Documentation, Release 0.8.4

– get_sex() prediction

• consolidated data loading for functions and uses fastest option

4.7. Release History 109

methylcheck Documentation, Release 0.8.4

110 Chapter 4. Tutorials and Guides

CHAPTER 5

Indices and tables

• genindex

111

methylcheck Documentation, Release 0.8.4

112 Chapter 5. Indices and tables

Python Module Index

m
methylcheck.cli, 73
methylcheck.load_processed, 87
methylcheck.predict, 103
methylcheck.probes, 94
methylcheck.qc_plot, 100
methylcheck.read_geo_processed, 90
methylcheck.reports.qc_report.run_pipeline,

93
methylcheck.samples, 97

113

methylcheck Documentation, Release 0.8.4

114 Python Module Index

Index

Symbols
__init__() (methylcheck.reports.qc_report.ReportPDF

method), 92

A
assign() (in module methylcheck), 87
assign() (in module methylcheck.samples), 97

B
beta_density_plot() (in module methylcheck), 83
beta_density_plot() (in module

methylcheck.samples), 97
beta_mds_plot() (in module methylcheck), 84
beta_mds_plot() (in module methylcheck.samples),

98
bis_conversion_control() (in module

methylcheck.qc_plot), 102

C
combine_mds() (in module methylcheck), 85
combine_mds() (in module methylcheck.samples),

100
container_to_pkl() (in module

methylcheck.load_processed), 90
cumulative_sum_beta_distribution() (in

module methylcheck), 86
cumulative_sum_beta_distribution() (in

module methylcheck.samples), 98

D
detect_header_pattern() (in module

methylcheck.read_geo_processed), 91
drop_nan_probes() (in module methylcheck), 83
drop_nan_probes() (in module

methylcheck.probes), 97

E
exclude_probes() (in module methylcheck), 81

exclude_probes() (in module methylcheck.probes),
94

exclude_sex_control_probes() (in module
methylcheck), 82

exclude_sex_control_probes() (in module
methylcheck.probes), 94

exec_summary() (methylcheck.reports.qc_report.ReportPDF
method), 92

G
get_sex() (in module methylcheck), 86
get_sex() (in module methylcheck.predict), 103

I
infer_strain() (in module methylcheck.predict),

103

L
list_problem_probes() (in module methylcheck),

80
list_problem_probes() (in module

methylcheck.probes), 95
load() (in module methylcheck), 76
load() (in module methylcheck.load_processed), 87
load_both() (in module methylcheck), 77
load_both() (in module

methylcheck.load_processed), 89

M
mean_beta_compare() (in module methylcheck), 84
mean_beta_compare() (in module

methylcheck.samples), 99
mean_beta_plot() (in module methylcheck), 84
mean_beta_plot() (in module

methylcheck.samples), 97
methylcheck.cli (module), 73
methylcheck.load_processed (module), 87
methylcheck.predict (module), 86, 103
methylcheck.probes (module), 80, 94

115

methylcheck Documentation, Release 0.8.4

methylcheck.qc_plot (module), 100
methylcheck.read_geo_processed (module),

90
methylcheck.reports.qc_report.run_pipeline

(module), 93
methylcheck.samples (module), 83, 97

O
open_error_buffer()

(methylcheck.reports.qc_report.ReportPDF
method), 93

P
page_of_paragraphs()

(methylcheck.reports.qc_report.ReportPDF
method), 93

page_of_text() (methylcheck.reports.qc_report.ReportPDF
method), 93

parse_custom_tables()
(methylcheck.reports.qc_report.ReportPDF
method), 93

plot_assigned_groups() (in module
methylcheck.samples), 97

plot_beta_by_type() (in module methylcheck), 80
plot_beta_by_type() (in module

methylcheck.qc_plot), 100
plot_controls() (in module methylcheck), 79
plot_controls() (in module methylcheck.qc_plot),

102
plot_M_vs_U() (in module methylcheck), 79
plot_M_vs_U() (in module methylcheck.qc_plot), 101
problem_probe_reasons() (in module

methylcheck.probes), 95

Q
qc_signal_intensity() (in module methylcheck),

78
qc_signal_intensity() (in module

methylcheck.qc_plot), 101

R
read_geo() (in module methylcheck), 75
read_geo() (in module

methylcheck.read_geo_processed), 90
ReportPDF (class in methylcheck.reports.qc_report),

91
run_pipeline() (in module methylcheck), 74
run_qc() (in module methylcheck), 74
run_qc() (in module methylcheck.qc_plot), 100

S
sample_plot() (in module methylcheck), 83
sample_plot() (in module methylcheck.samples), 98

T
to_table() (methylcheck.reports.qc_report.ReportPDF

method), 93

116 Index

	methylcheck is part of the methylsuite
	Methylsuite package components
	Installation
	Tutorials and Guides
	Loading processed methylation data and checking beta distributions
	Loading Beta Values and Metadata
	Loading Other Types of Data
	Loading Data from .csv Files
	Checking Beta Distributions

	Filtering Poor Quality Probes
	Available probe exclusion lists
	Filtering poor quality probes
	Filtering sex-linked probes and control probes

	Quality Control
	controls_report (a color-coded spreadsheet of control probe performance per sample)
	Quality Control in the IDE
	Predicting Sex
	Report PDF tool

	Custom QC with pOOBAH Vales
	Load the Beta Values in a dataframe
	Load p-values in a dataframe
	Mask Beta values where probe fails
	Remove Samples based on Percent or Number of Failed Probes
	Drop out Probes with a Percentage of NaNs

	Outlier detection using Multidimensional Scaling (MDS)
	API Reference
	methylcheck.cli
	methylcheck.run_pipeline
	methylcheck.run_qc
	methylcheck.read_geo
	methylcheck.load
	methylcheck.load_both
	methylcheck.qc_signal_intensity
	methylcheck.plot_M_vs_U
	methylcheck.plot_controls
	methylcheck.plot_beta_by_type
	methylcheck.probes
	methylcheck.list_problem_probes
	methylcheck.exclude_probes
	methylcheck.exclude_sex_control_probes
	methylcheck.drop_nan_probes
	methylcheck.samples
	methylcheck.sample_plot
	methylcheck.beta_density_plot
	methylcheck.mean_beta_plot
	methylcheck.mean_beta_compare
	methylcheck.beta_mds_plot
	methylcheck.combine_mds
	methylcheck.cumulative_sum_beta_distribution
	methylcheck.predict
	methylcheck.get_sex
	methylcheck.assign
	Loading Data
	ReportPDF Report Builder class
	Run QC pipeline
	filtering probes
	plotting functions
	sex prediction

	Release History
	v0.8.3
	v0.8.2
	v0.8.1
	v0.8.0
	v0.7.9
	v0.7.6
	v0.7.5
	v0.7.4
	v0.7.3
	v0.7.2
	v0.7.1
	v0.7.0
	v0.6.4
	v0.6.3
	v0.6.2
	v0.6.1
	v0.6.0
	v0.5.9
	v0.5.7
	v0.5.4
	v0.5.2
	v0.5.1
	v0.5.0
	v0.4.0

	Indices and tables
	Python Module Index
	Index

